ADVANCES IN MODELLING WAVE-STRUCTURE INTERACTION THROUGH ARTIFICIAL NEURAL NETWORKS
ICCE 2014 Cover Image
PDF

Keywords

artificial neural network
database
wave overtopping
wave reflection
wave transmission

How to Cite

Zanuttigh, B., Formentin, S. M., & Van der Meer, J. W. (2014). ADVANCES IN MODELLING WAVE-STRUCTURE INTERACTION THROUGH ARTIFICIAL NEURAL NETWORKS. Coastal Engineering Proceedings, 1(34), structures.69. https://doi.org/10.9753/icce.v34.structures.69

Abstract

This contribution describes a new Artificial Neural Network (ANN) able to predict at once the main parameters representative of the wave-structure interaction processes, i.e. the wave overtopping discharge, the wave transmission coefficient and the wave reflection coefficient. The development of this ANN started with the preparation of a new extended and homogeneous database (derived from CLASH database) which collects all the available tests including at least one of the three parameters, for a total amount of 16,165 data. Some of the existing ANNs were compared and improved, leading to the selection of a final ANN, whose architecture was optimized through an in-depth sensitivity analysis to the learning and training ANN features. The new ANN here proposed provides accurate predictions for all the three parameters, resulting in a tool that can be efficiently used for design purposes.
https://doi.org/10.9753/icce.v34.structures.69
PDF

References

CLASH, 2004. Crest Level Assessment of coastal Structures by full scale monitoring, neural network prediction and Hazard analysis on permissible wave overtopping. EC-contract EVK3-CT-2001-00058. www.clash-eu.org.

EurOtop, 2007. European Manual for the Assessment of Wave Overtopping. T. Pullen, N.W.H. Allsop, T. Bruce, A. Kortenhaus, H. Schuttrumpf and J.W. van der Meer. At: www.overtopping-manual.com.

Formentin, S. M. and Zanuttigh B. 2013. Prediction of wave transmission through a new artificial neural network developed for wave reflection. Proceedings of 7th International Conference on Coastal Dynamics, http://www.coastaldynamics2013.fr/pdf_files/057_Formentin_SaraMizar.pdf.

Levenberg, K., 1944. A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics 2, 164-168.

Lykke Andersen, T., 2006. Hydraulic Response of Rubble Mound Breakwaters: Scale Effects - Berm Breakwaters. Aalborg University, PhD thesis, 429 pp.

Marquardt, D., 1963. An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics 11 (2), 431-441.

Oumeraci, H., Kortenhaus A. and Burg S. 2007. Investigations of wave loading and overtopping of an innovative mobile flood defence system: Analysis of model tests and design formulae, Report Nr. 949, Technische Universität Braunschweig, Leichtweiß-Institut fur Wasserbau, Abteilung Hydromechanik und Kusteningenieurwesen.

Oumeraci, H., Kortenhaus A. and Haupt R. 2001. Untersuchung zur Abminderung des Wellenuberlaufs bei senkrechten Wänden durch Wellenabweiser, Report Nr. 865, Technishe Universität Braunschweig, Leichtweiß-Institut fur Wasserbau, Abteilung Hydromechanik und Kusteningenieurwesen.

Oumeraci, H., Kortenhaus A. and Haupt R. 2004. Überarbeitung des Bemessungskonzepts fur die Hochwasserschutzwände des privaten Hochwasserschutzes im Hamburger Hafen, Report Nr. 860, Technishe Universität Braunschweig, Leichtweiß-Institut fur Wasserbau, Abteilung Hydromechanik und Kusteningenieurwesen.

Panizzo, A. and Briganti R. 2007. Analysis of wave transmission behind low crested breakwaters using neural networks. Coastal Engineering, 54, 643-656.

Van der Meer, J.W., Bruce T., Allsop W., Franco L., Kortenhaus A., Pullen T. and Schuttrumpf H. 2013. EurOtop revisited. Part 1: sloping structures. Proceedings of ICE, Coasts, Marine Structures and Breakwaters, Edinburgh, UK.

Van der Meer, J.W., Verhaeghe, H. and Steendam, G.J. 2009. The new wave overtopping database for coastal structures. Coastal Engineering 56, 108-120.

Van Gent, M.R.A., van den Boogaard, H.F.P., Pozueta, B. and Medina, J.R. 2007. Neural network modelling of wave overtopping at coastal structures. Coastal Engineering 54, 586-593.

Van Oosten, R.P. and Peixò Marco J. 2005. Wave transmission at various types of low-crested structures using neural networks. MsC Thesis, TU Delft, Faculty of Civil Engineering and Geosciences, Hydraulic Engineering.

Verhaeghe, H. 2005. Neural network prediction of wave overtopping at coastal structures. PhD dissertation, Ghent University, Belgium.

Verhaeghe, H., De Rouck, J. and Van der Meer, J.W. 2008. Combined classifier-quantifier model: a 2-phases neural model for prediction of wave overtopping at coastal structures. Coastal Engineering 55, 357-374.

Victor L., 2012. Optimization of the hydrodynamic performance of overtopping wave energy converters: experimental study of optimal geometry and probability distribution of overtopping volumes. PhD dissertation, Ghent University, Belgium

Wilmott, C.J. 1981. On the validation of models. Physical Geography 2, 184-194.

Zanuttigh, B. and J.W., Van der Meer, 2008. Wave reflection from coastal structures in design conditions. Coastal Engineering, 55, 771-779.

Zanuttigh, B., Formentin, S.M. and Briganti R. 2013. A Neural Network for the prediction of wave reflection from coastal and harbor structures. Coastal Engineering 80, 49-67.

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.