SIMULATING THE FORMATION OF TIDAL CHANNELS ALONG AN OPEN-COAST TIDAL FLAT: THE EFFECTS OF INITIAL PERTURBATION
ICCE 2018 Cover Image
PDF

How to Cite

Zhang, Y., Zhou, Z., Geng, L., Coco, G., Tao, J., & Zhang, C. (2018). SIMULATING THE FORMATION OF TIDAL CHANNELS ALONG AN OPEN-COAST TIDAL FLAT: THE EFFECTS OF INITIAL PERTURBATION. Coastal Engineering Proceedings, 1(36), papers.84. https://doi.org/10.9753/icce.v36.papers.84

Abstract

A state-of-the-art morphodynamic model (Delft3D) was used to explore the effects of bathymetric perturbation on the morphodynamic modeling of tidal channels and flats. Short-term and medium-term modeling results indicate that the two-way interaction of the hydrodynamic forcing and initial perturbation has influence on the evolution of tidal channel ontogeny. There is a critical range of the magnitude of initial perturbation, within which the morphodynamic development tends to be similar. By comparing with the case without initial perturbation, the case with a slight increase in perturbation magnitude can considerably enhance the rate of the morphodynamic development.
https://doi.org/10.9753/icce.v36.papers.84
PDF

References

Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., and Silliman, B. R. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2), 169-193.

Belliard, J. P., Toffolon, M., Carniello, L., and D'Alpaos, A. 2015. An ecogeomorphic model of tidal channel initiation and elaboration in progressive marsh accretional contexts. Journal of Geophysical Research: Earth Surface, 120(6), 1040-1064.

Bouma, T. J., van Belzen, J., Balke, T., Zhu, Z., Airoldi, L., Blight, A. J., Davies, A. J., Galvan, C., Hawkins, S. J., Hoggart, S. P. G., Lara, J. L., Losada, I. J., Maza, M., Ondiviela, B., Skov, M. W., Strain, E. M., Thompson, R. C., Yang, S., Zanuttigh, B., Zhang, L., and Herman, P. M. J. 2014. Identifying knowledge gaps hampering application of intertidal habitats in coastal protection: opportunities & steps to take. Coastal Engineering, 87, 147-157.

Carniello, L., D'Alpaos, A., and Defina, A. 2011. Modeling wind waves and tidal flows in shallow micro-tidal basins. Estuarine Coastal and Shelf Science, 92(2), 263-276.

Coco, G., Zhou, Z., van Maanen, B., Olabarrieta, M., Tinoco, R., and Townend, I. 2013. Morphodynamics of tidal networks: advances and challenges. Marine Geology, 346, 1-16.

Costanza, R., DArge, R., DeGroot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., ONeill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., and VandenBelt, M. 1997. The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253-260.

D'Alpaos, A., Lanzoni, S., Marani, M., Fagherazzi, S., and Rinaldo, A. 2005. Tidal network ontogeny: channel initiation and early development. Journal of Geophysical Research-Earth Surface, 110(F2), 351-394.

Dastgheib, A., Roelvink, J. A., and Wang, Z. B. 2008. Long-term process-based morphological modeling of the marsdiep tidal basin. Marine Geology, 256(1-4), 90-100.

Eisma, D. 1998. Intertidal deposits: river mouths, tidal flats, and coastal lagoons, CRC Press, New York.

Fagherazzi, S., Bortoluzzi, A., Dietrich, W. E., Adami, A., Lanzoni, S., Marani, M., and Rinaldo, A. 1999. Tidal networks 1. Automatic network extraction and preliminary scaling features from digital terrain maps. Water Resources Research, 35(12), 3891-3904.

Geng, L., Gong, Z., Lanzoni, S., and D'Alpaos, A. 2018. A new method for automatic definition of tidal creek networks. Journal of Coastal Research, 156-160.

Gong, Z., Wang, Z., Stive, M. J. F., Zhang, C., and Chu, A. 2012. Process-based morphodynamic modeling of a schematized mudflat dominated by a long-shore tidal current at the central jiangsu coast, china. Journal of Coastal Research, 285, 1381-1392.

Hancock, G. R., Coulthard, T. J., and Lowry, J. B. C. 2016. Predicting uncertainty in sediment transport and landscape evolution - the influence of initial surface conditions. Computers and Geosciences, 90, 117-130.

Iwasaki, T., Shimizu, Y., and Kimura, I. 2013. Modelling of the initiation and development of tidal creek networks. Proceedings of the ICE - Maritime Engineering, 166(2), 76-88.

Izumi, N., and Parker, G. 2000. Linear stability analysis of channel inception: downstream-driven theory, 419, 239-262.

Lanzoni, S., and D'Alpaos, A. 2015. On funneling of tidal channels. Journal of Geophysical Research: Earth Surface, 120(3), 433-452.

Lesser, G. R., Roelvink, J. A., Kester, J. A. T. M., and Stelling, G. S. 2004. Development and validation of a three-dimensional morphological model. Coastal Engineering, 51(8), 883-915.

Loewenherz, D. S. 1991. Stability and the initiation of channelized surface drainage: a reassessment of the short wavelength limit. Journal of Geophysical Research Solid Earth, 96(B5), 8453-8464.

Marciano, R., Wang, Z. B., Hibma, A., de Vriend, H. J., and Defina, A. 2005. Modeling of channel patterns in short tidal basins. Journal of Geophysical Research-Earth Surface, 110(F01001F1).

Mitsch, W. J., and Gosselink, J. G. 2000. Wetlands., 535-544 pp., Wiley.

Perron, J. T., and Fagherazzi, S. 2012. The legacy of initial conditions in landscape evolution. Earth Surface Processes & Landforms, 37(1), 52-63.

Temmerman, S., Meire, P., Bouma, T. J., Herman, P. M. J., Ysebaert, T., and De Vriend, H. J. 2013. Ecosystem-based coastal defence in the face of global change. Nature, 504(7478), 79-83.

Van der Wegen, M., and Roelvink, J. A. 2008. Long-term morphodynamic evolution of a tidal embayment using a two-dimensional, process-based model. Journal of Geophysical Research-Oceans, 113(C03016C3).

Van der Wegen, M., Wang, Z. B., Savenije, H. H. G., and Roelvink, J. A. 2008. Long-term morphodynamic evolution and energy dissipation in a coastal plain, tidal embayment. Journal of Geophysical Research-Earth Surface, 113(F03001F3), 337-344.

Van Oyen, T., Carniello, L., D'Alpaos, A., Temmerman, S., Troch, P., and Lanzoni, S. 2014. An approximate solution to the flow field on vegetated intertidal platforms: applicability and limitations. Journal of Geophysical Research: Earth Surface, 119(8), 1682-1703.

Zedler, J. B., and Kercher, S. 2005. Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources, 30(1), 39-74.

Zhang, Q., Gong, Z., Zhang, C., Townend, I., Jin, C., and Li, H. 2016. Velocity and sediment surge: what do we see at times of very shallow water on intertidal mudflats? Continental Shelf Research, 113, 10-20.

Zhou, Z., Stefanon, L., Olabarrieta, M., D'Alpaos, A., Carniello, L., and Coco, G. 2014. Analysis of the drainage density of experimental and modelled tidal networks. Earth Surface Dynamics, 2(1), 105-116.

Zhou, Z., Coco, G., van der Wegen, M., Gong, Z., Zhang, C., and Townend, I. 2015. Modeling sorting dynamics of cohesive and non-cohesive sediments on intertidal flats under the effect of tides and wind waves. Continental Shelf Research, 104, 76-91.

Zhou, Z., van der Wegen, M., Jagers, B., and Coco, G. 2016. Modelling the role of self-weight consolidation on the morphodynamics of accretional mudflats. Environmental Modelling & Software, 76, 167-181.

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.