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MOTIVATION 
The estimation of inundation zones is one of the main 
objectives of tsunami early warning systems but is 
compounded by several challenges, ranging from the 
high computational cost to the inherent uncertainties 
present. The latter stem in part to the incapacity to 
establish accurately and with certainty the parameters 
that characterize the coseismic slip during an 
earthquake. However, here it is assumed that it is 
possible to incorporate an estimate of the uncertainty 
and its consequent variability in order to offer a forecast 
that better portrays the hazard and, eventually, lead to 
the protection and mitigation of such disasters of natural 
origin.  
 
The spatial distribution of the slip of an earthquake is a 
determining factor when estimating a tsunami 
propagation (Geist, 2002, 2013). However, it is not 
possible to determine with absolute certainty its spatial 
distribution, even with the benefit of time, owing to 
epistemic and aleatoric uncertainties (Cienfuegos, 
2018). By incorporating variability in the slip distribution 
in the rupture zone, this uncertainty could be 
incorporated into the tsunami propagation and 
inundation. 
 
Stochastic models are used to generate predictive 
scenarios of slip distribution (D(x,y)). Mai & Beroza 
(2002) show that these types of models provide a more 
accurate approach to parameterize the complexity of the 
slip of an earthquake, in this way epistemic uncertainty 
can be considered. The slip distribution can be 
characterized as a spectral power density in the 
wavenumber domain, where the parameters of the 
random field are related to variables such as the 
magnitude and geometry of the fault (Lavallée & 
Archuleta, 2013). The use of a spectral density model 
allows the generation of scenarios to preserve this 
condition, and thus to be able to simulate the movement 
of the ground with a stochastic realization of the sliding 
distribution. Typically, the spectral power density is used 
in conjunction with a random phase to generate 
scenarios that retain the magnitude but are not 
constrained regarding the spatial distribution (e.g. Goda 
2014, 2015). This is suitable for long term hazard 
assessment, but is less appealing for early warning 
hazard assessments where a baseline earthquake 
should be considered. 
  
Here, a Phase Variation Methodology is introduced to 
provide a simple method to generate a set of stochastic 
scenarios, that would have a mean expected value 
consistent with the baseline earthquake. This is achieved 
by a single free parameter α controlling the randomness. 
However, this parameter has no physical basis, so in the 
first instance, it is not possible to define its value. 

 
The main objective of this work is to determine whether is 
it possible to use the Phase Variation Methodology in an 
early warning context. For this, it is sought to determine 
the value of α that best reproduces the inundation 
observed for the Maule event (2010), and that is capable 
of reproducing the uncertainty that a tsunami prediction 
process implies. Then, the calibrated methodology is 
validated for de Illapel event (2015) in a forecast mode. 
 
METHODOLOGY 
To evaluate the effects of the tsunami, the inundation to 
the Central Chile cities of San Antonio, Constitución and 
Talcahuano that were affected by the earthquake and 
tsunami of Maule in 2010 have been studied. At least 19 
solutions have been published pertaining the source 
model for that earthquake. Cienfuegos et al. (2018), 
showed that the median inundation (𝑃50%) calculated 
these 19 source models is optimally adjusted to the 
flooding observed in 2010. Therefore, this is treated as 
the target inundation that is sought to be reproduced by 
the Phase Variation Methodology and it will be used as a 
basis to validate the results obtained.  

 
To generate the stochastic scenarios, the observed slip 
distribution is transformed into its power spectral density. 
This is then modeled by a Von Kármán spectral power 
function, given by:  
 

𝑃(𝑘) =
𝑎𝑥 ∙ 𝑎𝑦

(1 + 𝑘2)𝐻+1
 (1) 

 

where k is the wave number defined by 𝑘 =

√𝑎𝑥
2𝑘𝑥

2 + 𝑎𝑦
2𝑘𝑦

2, 𝑘𝑥 and 𝑘𝑦 are horizontal and vertical wave 

number, respectively. 𝑎𝑥 and 𝑎𝑦 are the correlation 

lengths that control the absolute level of the power 
spectrum for small wave numbers, and H is the Hurst 
number exponent (Mai & Beroza, 2002). P(k) with this the 
amplitude spectrum model is constructed.  
 
Unlike previous methods, the phase, ϕ, of the observed 
power spectrum is computed and retained. However, the 
modeled phase corresponds to a perturbation of the 
observed phase:  
 

𝜙(𝑚, 𝑛) = �̅�(𝑚, 𝑛) + 𝜎𝜙(𝑚, 𝑛) (2) 
 

where m and n are along-strike and along-dip coordinates 
in wavenumber space. Each realization of the phase ϕ is 

calculated as the sum of �̅�, which is the average phase 

from the reference model, and 𝜎𝜙 which represents the 

perturbation. The latter is given by: 
 

𝜎𝜙(𝑚, 𝑛) = 𝛼𝑁(0,1)(𝑚, 𝑛) (3) 
 

Where N(0,1) is a normally distributed random field, and α 
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is the free parameter which determines the range of 
variability. Then, with the model amplitude spectrum and 
the phase spectrum the random fields are obtained. 
Finally, applying Inverse Fast Fourier Transform, the 
spectral scenarios are converted to the spatial domain, 
obtaining a set of N stochastic scenarios.  By virtue of the 
central limit theorem, a large number of N would have an 
expected value that is approximated to the observed 
scenario.  
 
It is acknowledged that this is an algorithmic approach 
that does not take into account the underlying physics of 
the rupture, but its simple implementation is 
hypothesized is a good compromise for early warning. 
However, it is necessary to determine which value of α 
best reproduces the observed flood and variability.  
 
A set of 10 different values are tested for α (𝛼𝑛 =
𝜋 𝑛⁄ , 𝑛 = 1…10). For each one of these values, 50 slip 
scenarios are generated using the Phase Variation 
Methodology. Subsequently, the representative 
inundation is obtained in each case, which is given by the 
median of the 50 scenarios generated, and also is 
calculated the variability provided by each case, which is  
characterized as: 
 

𝐼 = 𝐼95% − 𝐼5% (4) 
 

Where 𝐼95% and 𝐼5% are the Inverse Cumulative Density 
Function at 95% and 5%, respectively. Representative 
hydrodynamic variables are extracted from these results: 

maximum run-up (z(x,y)) and maximum amplitude 
(η(x,y)). These results are compared with the observed 
flooding and with the variability that exists between the 
inversion models presented in Cienfuegos et al. (2018). 
To determine which value is the most optimal, the 
maximum likelihood method is used (Simmon, et al., 
2017). This consists of assigning an adjustment score 
(BSS) to each prediction model, which depends on the 
similarity of the results obtained with those to be 
reproduced. The BSS score is given by: 
 

𝐵𝑆𝑆 = 1 −
𝑀𝑆𝐸(𝑚, 𝑜)

𝑀𝑆𝐸(𝑜)
= 1 −

∑(|𝜂𝑜 − 𝜂𝑚|)
2

∑(|𝜂𝑜|)
2  (5) 

 

Where 𝜂𝑚 corresponds to the modeled inundation and  𝜂𝑜 
is the observed inundation. This value must be 
normalized so that the sum of all scores equals 1, then: 
 

𝐿𝐵𝑆𝑆 =
𝐵𝑆𝑆𝑖

∑ 𝐵𝑆𝑆𝑖
𝑛
𝑖=1

 (6) 

 

The value that maximizes the 𝐿𝐵𝑆𝑆 score is selected for 
both, the inundation and the expected uncertainty. After 
defining and selecting the value of α that maximize the 
𝐿𝐵𝑆𝑆 score, the methodology is validated by generating 
stochastic scenarios through the Phase Variation 
Methodology for the Illapel event (2015) using the best 
value of α.  The hypothesis is that this value would be 
able to reproduce the median inundation and variability 
given by the inversion models for different events. 

 

Figure 1 – a) Median inundation maps 𝑃50% for San Antonio, Constitución and Talcahuano considering 𝛼 = 𝜋 and 𝛼 =
𝜋 10⁄ . b) Level of uncertainty I  for San Antonio, Constitución and Talcahuano considering 𝛼 = 𝜋 and 𝛼 = 𝜋 10⁄ . The black 
dotted line represents the inundation and variability obtained from the inversion models. 



RESULTS 
To determine the level of variability that the value of α 
gives to the results, the median inundation (𝑃50%) and 
the uncertainty level (I) are calculated for San Antonio, 
Constitución and Talcahuano, using Tsunami HySea 
software for the tsunami modeling, where 4 hours of 
propagation are calculated with high-resolution numerical 
grids. 
 
From Figure 1.a) is observed that as the value of α 
decreases, so does the inundation height. This is 
explained by high values of α allows the generation of 
scenarios that differ to a greater extent from the original, 
being able to produce extreme events inconsistent with 
the actual source. 
 
Consequently, Figure 1.b) shows that the variability 
decreases as the value of α also decreases, while for 
higher values of this parameter the variability is even 
greater. This is explained because by increasing the 
value of α the scenarios that are generated differ to a 
greater extent from each other, while by decreasing the 
parameter the methodology is restricted to generate 
scenarios similar to the original, resulting in very little 
variability between scenarios. The goal is then, to find an 
adequate balance between these extremes. 
 
Figure 2.a) shows the LBSS scores obtained for each case 

of α. It is observed that for lower values it is possible to 

reproduce to a great extent the observed flood, however, 

it is not possible to reproduce the variability.  

Furthermore, using values of α close to π 6⁄ , it is possible 
to satisfactorily reproduce both the observed inundation 
and the uncertainty level, as it is shown by Figure 2.b). 

Finally, the methodology is validated using a value of 𝛼 =

𝜋 6⁄  and 𝛼 = 𝜋 5⁄ , the results using 𝛼 = 𝜋 are also 

obtained, this with the main of determining the sensitivity 

of the Coquimbo bay to the parameter. 

Figure 3.a) and 3.b) shows the median inundation and 

level uncertainty, respectively, for Coquimbo bay 

considering 𝛼 = 𝜋 6⁄ . It is observed that both cases the 

maps obtained are similar to those expected.  

Also, as seen in Figure 3.c), the adjustment scores for the 

Illapel event in 2015 are shown, it is observed that for 𝛼 =

𝜋 6⁄  and 𝛼 = 𝜋 5⁄  an optimal fit is obtained, so it is 

possible to validate the methodology in the first instance. 

CONSLUSIONS 

The sensitivity of the Phase Variation Methodology to the 

parameter α has been identified, which is responsible for 

assigning variability to the initial deformation that a 

tsunami will produce. For this reason, it is important to 

have knowledge of the values that could be assigned to 

the parameter α in order to obtain uncertainty in the 

results without moving away from the real inundation. A 

range that goes from 𝛼 = 𝜋 6⁄  and 𝛼 = 𝜋 5⁄  is proposed, 

since these values provide an acceptable fit between the 

Figure 3 – a) Median inundation and b) uncertainty level 
for Coquimbo bay, considering α = π 6⁄ . The black 
dotted line represents the inundation and variability 
obtained from the inversion models. c) Adjustment 
score for the median flood (blue) and uncertainty level 
(orange) for the Coquimbo bay, considering α = π 6⁄ , 
α = π 5⁄  and α = π. The red dotted line indicates the 
position for  α = π 6⁄ . 

Figure 2 – a) Adjustment scores for the median inundation 
and b) for the level of uncertainty, considering all the α 
values. In blue are the scores for San Antonio, in orange 
for Constitución and yellow for Talcahuano. The red 
dotted line corresponds to the position where α = π 6⁄ . 



models and the actual inundation, in addition to providing 

the expected epistemic uncertainty. However, the exact 

value that will be assigned to the parameter will depend 

on the context for which it is required, since for reliable 

sources of initial slip it might not be necessary to assign 

great variability to the results, while for fast inversion 

models or that there is few information of the rupture, as 

occurs in early warning systems, greater uncertainty 

would be expected, so it would be necessary to assign a 

higher value to α, however, it is not recommended that it 

be greater than 𝛼 = 𝜋 4⁄ , since unrealistic scenarios 

could be generated. 
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