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LONG-TERM PREDICTION OF LONGSHORE SEDIMENT TRANSPORT IN THE CONTEXT 
OF CLIMATE CHANGE 

Amin Reza Zarifsanayei*,1,2, Amir Etemad-Shahidi 1,2, Nick Cartwright1,2, and Darrell Strauss2 

Due to climate change impacts on atmospheric circulation, global and regional wave climate in many coastal regions 

around the world might change. Any changes in wave parameters could result in significant changes in wave energy 

flux, the patterns of coastal sediment transport, and coastal evolution. Although some studies have tried to address the 

potential impacts of climate change on longshore sediment transport (LST) patterns, they did not sufficiently consider 

the uncertainties arising from different sources in the projections. In this study, the uncertainty associated with the 

choice of model used for the estimation of LST is examined. The models were applied to a short stretch of coastline 

located in Northern Gold Coast, Australia, where a huge volume of sediment is transported along the coast annually. 

The ensemble of results shows that the future mean annual and monthly LST rate might decrease by about 11 %, 

compared to the baseline period. The results also show that uncertainty associated with LST estimation is significant. 

Hence, it is proposed that this uncertainty, in addition to that from other sources, should be considered to quantify the 

contribution of each source in total uncertainty. In this way, a probabilistic-based framework can be developed to 

provide more meaningful output applicable to long-term coastal planning.  
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NTRODUCTION  

      Coastal areas are a major focus for the development of cities and infrastructure. Sandy coasts can act 

as natural barriers to protect coastal regions from inundation by storm surge and wave action. Sandy 

beach-dune systems evolve under the influence of many coastal processes that act across a wide range 

of spatio-temporal scales (Masselink and Hughes, 2003). Longshore processes are among the key factors 

controlling long-term shoreline changes (e.g., Ruggiero, 2010 Ruggiero et al., 2016; Antolínez et al., 

2018). In this regard, changes in the patterns of longshore processes and the resulting shoreline changes 

can affect coastal communities worldwide. Longshore sediment transport (hereafter LST) gradient is 

essential for shoreline changes calculations, and is adopted as the basis of several shoreline models  such 

as  GENESIS (Hanson and Kraus, 1989), LITPACK (DHI, 2017), UNIBEST (Tonnon et al., 2018). The 

performance of the shoreline models depends directly on the accuracy of the methods used for estimation 

of LST rate along the shoreline. In coastal studies, estimates of LST can be obtained from field 

measurements or sediment transport models (e.g., empirical formulas, numerical models). Field 

measurements can provide qualitative and quantitative information on historic LST patterns. 

Nevertheless, they have some significant constraints (Cooper and Pilkey, 2007) and are costly. Empirical 

formulas simplify sediment transport phenomena through parametrization. However, direct use of 

empirical formulas without engineering judgments could lead to unreliable results. Numerical models 

simulate detailed hydrodynamic and sediment transport processes, but they should be calibrated against 

observations to provide reliable results. Additionally, the performance of the models directly depends on 

the fundamental assumptions behind the model development (e.g., initiation of sediment movements), as 

well as the forcing conditions (e.g., waves) under which the models are implemented.    

      Coastal management plans require quantitative and qualitative estimates of LST patterns in long-term 

scales (e.g., decades) (Magnor et al., 2017). On the other hand, any estimation in these time scales should 

account for potential climate change (hereafter CC) impacts on coastal sediment transport patterns and 

associated uncertainties (Ranasinghe, 2016). In this regard, a modeling framework is required to be 

calibrated against field measurements for a baseline period. Then the framework can be driven by future 

forcing conditions. Future forcing conditions, themselves, are explicitly dependent on the predictions of 

CC impacts on atmospheric circulations on global, regional, and local scales. Hence, each part of such a 

framework is influenced by uncertainties arising from different sources that could lead to highly 

uncertain projections. It should be pointed out that uncertainty in projection of future patterns of LST 

can be classified in two main categories: epistemic (knowledge) uncertainty, and intrinsic (aleatory) 

uncertainty (Toimil et al., 2020). A prime example of epistemic uncertainty (knowledge uncertainty) is 
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the existence of a wide range of coastal sediment transport models developed under different 

assumptions. Variability of climate systems can be considered as aleatory/intrinsic uncertainty. Figure 1 

illustrates the potential sources of uncertainty in the projection of LST patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Potential sources of uncertainty in the projection of wave-driven LST 

      There have been some efforts to estimate future LST patterns for different case studies around the 

world (e.g., West Africa (Almar et al., 2015), Vietnam (Dastgheib et al., 2016), India (Chowdhury et 

al., 2020)). Nonetheless, they mainly addressed the uncertainty associated with global circulation 

models and/or emission scenarios, and they overlooked other sources of uncertainty. A reliable 

prediction of future LST rates requires addressing uncertainty associated with all sources. One of the 

main sources of uncertainty is the choice of LST estimation method. Two conventional models for 

estimation of LST are simplified (bulk transport formulae) and process-based models. In recent decades, 

many researchers endeavored to develop or modify formulas for the prediction of the LST rate (e.g., 

Mil-Homens et al., 2013; Shaeri et al., 2020). Along with the simplified models, process-based models 

such as LITPACK and UNIBEST have been used to simulate LST patterns. The long-term net annual 

LST rate is typically estimated using hydrographic surveys and sediment budget analysis. Although 

these rough approaches do not provide any information on LST variations in time, they can be used to 

calibrate sediment transport models. Then the calibrated sediment transport models can be employed to 

estimate long-term patterns of LST.  

      This paper provides a preliminary investigation of the uncertainty associated with choice of LST 

model by comparing the intra- and inter-annual variability of LST patterns projected by a range of 

models for a short stretch of coastline close to the Gold Coast Seaway (QLD, Australia).   
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STUDY AREA 

      The Gold Coast (GC) is a coastal city located in southeast Queensland, Australia (Figure 2a). The 

GC beaches are social places where people interact, exercise, and relax. The beaches are also a major 

driver of the local tourism economy. The GC has a 35 km sandy coast (with medium to fine sand-sized 

grain) backed by a primary dune system. Coastal profiles along the shoreline typically show multiple 

bars (Figure 2c).  The littoral system is interrupted by three natural headlands and four river/creek inlets 

(Figure 2a). Offshore waves in the region are typically one of five wave climate types (Splinter et al., 

2012): long period swells from the S-SE direction, medium-period swells (generated in the Tasman Sea), 

wind waves from different directions, tropical cyclones (generated in the Coral Sea), and East Coast 

Lows (ECL) from the NE to SE direction. Coastal erosion along the coast occasionally occurs due to the 

highly developed coastline lacking a sufficient buffer for major storm events. Hence, to mitigate erosion 

problems in this region, periodic beach nourishment has been recommended and carried out. 

Additionally, two sand bypassing systems have been installed at the south and north of the Gold Coast.  

The sand bypassing systems mitigate the interruption of longshore drift caused by the extension of the 

training walls of the river entrances, as well as the construction of groins and two artificial reefs. The 

predominance of waves from the south-easterly direction is recognizable in the offshore wave rose of 

GC (Figure 2b). The average long-term net northward littoral drift has been estimated to be 500,000 m3 

/year at the southern GC (DHL, 1992) and 635,000 m3/year at the northern GC (Patterson, 2007).  It is 

worth mentioning that the changes in the LST rate can have significant influences on the rate of beach 

nourishment and artificial sand bypassing (or sand back-passing) in this study area. The focus of this 

paper is a 3-km stretch of coastline close to GC Seaway at the northern end of GC (Figure 2a).  

 

Figure 2.  a) Study area; b) offshore wave rose (Hs-Dm obtained from CFSR-driven waves); c) the 
representative mean coastal profile for North Gold Coast 

b 

a c 
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METHODOLOGY 

      In this study, the uncertainty associated with choice of LST estimation model was investigated. In 

this regard, an ensemble of LST models, including Kamphuis (Kamphuis,1991; hereafter K1), modified 

Kamphuis (Mil-Homens et al., 2013; hereafter K2), CERC (USACE, 1984; hereafter C), Van Rijn (van 

Rijn, 2014; hereafter V), two new formulas (hereafter S1 and S2) proposed by  Shaeri et al. (2020), as 

well as a process-based model (LITPACK, hereafter DHI) have been used to project the LST rate. Table 

1 indicates the dependency of the used transport formulae to different parameters. To set-up LITPACK, 

a representative mean coastal profile, through analyzing the shape of measured profiles and the 

corresponding wave climate of northern Gold Coast, was chosen (Figure 2c). To this end, fully 

recovered coastal profiles (a rare condition for northern GC) or completely erosive ones (one 

immediately measured after extreme conditions), were excluded from analysis as they could not be 

representative of long-term shape of coastal profiles.  

      All offshore waves of this study were extracted from the CSIRO’s CMIP5 global future wave 

projections databases (Hemer et al., 2015; Hemer and Trenham, 2016). Nearshore wave forcing 

conditions were first obtained by applying a simple, low-computational-cost wave transformation 

method (e.g., Battjes and Stive, 1985, Larson et al., 2010) to the hindcast datasets (CFSR-driven waves) 

for the period of 1979 to 2005. The depth-induced breaking wave height was estimated using the breaker 

index (𝛾𝑏) of Kamphuis (2010): 

𝛾𝑏 =  
𝐻𝑠𝑏

𝑑𝑏
⁄ = 0.56 𝑒3.5 𝑚                                                                                                (1)                           

where Hsb is breaker height, db is the water depth at break point, and m is the average surf zone bed slope.  

All LST models were then calibrated to reproduce the estimated rate of average long-term annual net 

LST in the area (i.e., 635,000 m3/year, Patterson, 2007). For calibration of the bulk transport formulas, 

simple adjustment factors were applied (Table 2); while for calibration of the process-based model, its 

free parameters were tuned (Table 3). Since shoreline orientation in northern GC has remained in an 

equilibrium condition in recent decades, it was assumed that shoreline orientation does not change in the 

future.  

Table 2. Settings used for tuning the transport 
formulae 

 

Formulae K1 K2 C V S1 S2 

The 
correction 
factor 
applied to 
the 
formulae 

 
 
0.7 

 
 
0.9 

 
 
0.3 

 
 
0.5 

 
 
1.5 

 
 
1.2 

D50=0.2 mm 
Average surfzone slope= 0.02 
The angle of normal to coastline=89 degree 

Table 3. Settings used for calibration of the process-
based model, LITPACK  

D50=0.2 mm 
The coastal profile used=a measured profile, representative of mean 
shape of profiles 
The angle of normal to coastline=89 degree 
Settling velocity= 0.026 m/s 
Bed roughness=0.045 m 
Ripple effects: included 
Method to calculate wave characteristics across the coastal profile: 
Battjes and Stive (1985) 
Critical Shields parameter=0.05 
Description of bedload concentration: deterministic 
Wave theory employed for calculation of the orbital wave motion: 
Doering and Bowen (1995) 

Table 1. Sensitivity of the transport formulae to different parameters 
 

LST formulae Dependency 
to Hb 

Dependency 
to Tp 

Dependency 
to αb 

Dependenc
y to mb 

Dependency 
to D50 

CERC (USACE, 1984) ∝ 𝐻𝑠𝑏
2.5 No ∝ sin (2𝛼𝑏) No No 

Kamphuis (Kamphuis, 1991) ∝ 𝐻𝑠𝑏
2  ∝ 𝑇𝑝

1.5 ∝ (sin 2𝛼𝑏)0.6 ∝ 𝑚𝑏
0.75 ∝ 𝐷50

−0.25 

Modified Kamphuis (Mil-Homens et al., 2013) ∝ 𝐻𝑠𝑏
2.75 ∝ 𝑇𝑝

0.89 ∝ (sin 2𝛼𝑏)0.5 ∝ 𝑚𝑏
0.86 ∝ 𝐷50

−0.69 

Van Rijn (van Rijn, 2014) ∝ 𝐻𝑠𝑏
3.1 implicitly ∝ sin (2𝛼𝑏) ∝ 𝑚𝑏

0.4 ∝ 𝐷50
−0.6 

Shaeri (Shaeri et al., 2020) (in a dimensional 
form) 

∝ 𝐻𝑠𝑏
2  ∝ 𝑇𝑝

0.8 ∝ (sin 2𝛼𝑏)0.6 implicitly ∝ 𝐷50
−0.25 

Shaeri (Shaeri et al., 2020) (in a 
nondimensional form) 

∝ 𝐻𝑠𝑏
2.3 ∝ 𝑇𝑝

0.8 ∝ (sin 2𝛼𝑏)0.5 implicitly ∝ 𝐷50
−0.2 

Description: Hsb is the significant wave height at breaker point (in m); Tp is peak wave period; αb is the angle of waves at breaker 
point (in degree or radian); mb is the beach slope within surf zone, and D50 is the median size of sediment particles (m). 
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      To project future LST patterns, offshore waves projected with surface wind forcing from the MRI-

CGCM3 GCM was used. This GCM was selected from the eight available GCMs as it provided the best 

comparison with the wave rose of the CFSR-driven hindcast (not shown). Nearshore wave conditions 

(the forcing conditions of LST models) for the baseline (1979-2005) and future (2081-2100, under RCP 

8.5) periods were obtained using the simple wave transformation method. The ensemble of LST 

projections was then analyzed to examine the intra- and inter-annual variability of LST and to establish 

the range of uncertainty corresponding to the choice of LST model. The projected change for each LST 

model was computed as follows: 

∆𝐿𝑆𝑇 = ∑ (
LSTFmo − LSTBmo

LSTBmo

)

𝑛

𝑚𝑜=1

n⁄                     (2) 

Where LSTFmo and LSTBmo are the LST rates estimated by the LST model ‘mo’ for future and baseline 

periods, respectively, and n is the number of ensemble members (LST models). 

RESULTS AND DISCUSSION  

      The boxplots of CFSR-driven waves (Figure 3, left panel) imply that for the historical period 1979-

2005, wave height distribution (i.e., first quartile, median and third quartile) varies monthly. 

Additionally, the occurrence of storms during February to April intensifies compared to other months. 

The statistical distribution of wave direction varies considerably from month to month. The rotation of 

waves direction toward the southeast, from May to August, is recognizable (Figure 3, right panel). This 

pattern was also observed in MRI-CGCM3-driven waves for the baseline period 1979-2005 (not shown).  

 

Figure 3. Monthly offshore wave height (left panel) and mean wave direction (right panel) for baseline period 
1979-2005 from CFSR-driven waves data 

      Projected future wave climate of MRI-CGCM-driven waves indicates ~ 5% decrease in mean 

significant wave height (Figure 4), and 2% decrease in mean peak wave period compared to the baseline 

period (not shown). Rotation of future wave direction towards the east, particularly from June to 

September (5 to 10 degrees), is recognizable (Figure 4). Besides, the GCM-driven waves data shows that 

the Hs95 and Hs99 of future waves decrease by 6.5% and 7%, respectively, compared to the baseline period. 

Therefore, the projected changes in the wave climate could lead to changes in the future patterns of LST.  

 

Figure 4. Left: Monthly mean significant wave height for the baseline and future periods (MRI-CGCM3-driven 
waves); Right: Monthly mean wave direction for the baseline and future periods (MRI-CGCM3-driven waves) 

      The offshore waves of the studied area are a combination of modal and stormy conditions so each of 

models were applied during stormy and modal conditions (Figure 5). During stormy conditions, the K1 



 COASTAL ENGINEERING PROCEEDINGS 2020 

 

 

 

6 

formula results in the lowest LST rates whilst the process-based model (DHI) and the V formula provide 

the highest estimates. During modal conditions, the DHI model provides the smallest LST estimates 

rates. As the process-based model considers sediment transport processes in the forms of both bedload 

and suspended load, it is conceivable that the relative contributions of bedload and suspended load to the 

total load are different during extreme and modal conditions. Under extreme wave forcing, the model 

simulates the separation of more sediments from bed, and as a result, more sediments become available 

in water column that eventually are transported by strong wave-driven longshore currents. In contrast to 

the other bulk formulae, the V formula was initially developed based on field measurements, 

experimental data, and numerical modeling. That is probably why its behavior is closer to that of the 

process-based model.  Nonetheless, since all models were calibrated by long-term average net annual 

LST rate, instead of relying on the results of a specific model for the prediction of long-term patterns of 

LST, the mean ensemble of results was considered for projections.   

 

Figure 5. The LST rates obtained from different LST models during a stormy condition (left), and a modal 
condition (Right)        

 

Figure 6 shows the intra-annual variation of monthly LST amounts for baseline and future periods 

associated with the forcing of MRI-CGCM3-driven waves. Seasonal variations in LST are observed due 

to seasonal changes in wave direction, and somehow, due to variations in the wave height. The 

highlighted gray area shows the range of uncertainty associated with the choice of LST models (inter-

model uncertainty). The range of the uncertainty during February to April is really high (~50,000 

m3/month difference in LST rate), whereas during November to January the uncertainty range is meager. 

The cycle for the baseline period indicates an increase in the LST rate from January to March and a 

decrease from March to December. This pattern changes slightly in the future period, as the duration of 

the seasonal cycle of LST is extended to April. 

 

 

Figure 6. The seasonal cycle of LST rates for the baseline (left figure) and future (right figure) periods 

      The projected future LST rate shows a decrease in almost all months, compared to the baseline period 

(variation of LST calculated by each model has been presented in Figure 7 and Figure 8 ). Each LST 

model has projected a different magnitude of variations in LST rates. For instance, the DHI model 
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projected a 19 % decrease in the annual rate of LST, while the S2 formula projected only a 9 % decrease. 

The mean of results (ensemble mean) shows ~ 11% decrease (compared to the baseline period) in annual 

and monthly mean LST rate.  

 

Figure 7. Variation of monthly net LST rate obtained from different models for the baseline (B) and future (F) 
periods (forcing condition: MRI-CGCM3-driven wave data) 

 

Figure 8. Variation of annual net LST rate for the baseline (B) and future (F) periods (forcing condition: MRI-
CGCM3-driven wave data) 

     Intra- and inter-annual variability of the LST rates were also determined based on normalized standard 

deviations of the results (i.e., intra-annual variability: standard deviation of the monthly means/time slice 

mean, inter-annual variability: standard deviation of the annual means/time slice mean); see Table 4. It 

seems that the DHI and the V models show higher inter-annual variability, compared to other models. 

But, all model, in the timescale of months, show relatively close intra-annual variability. Whilst there is 

variance amongst the LST models they are all in qualitative agreement with a projected increase in intra-

annual variability and a decrease in the inter-annual variability. Understanding the impact of such 
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variabilities (estimated by different LST models) on prediction of coastal evolution, and the 

corresponding countermeasures (e.g., sand bypassing) requires more investigation.   

 

 

LIMITATIONS AND THE WAY FORWARD 

      In this study, inter-model uncertainty was addressed by be employing an ensemble of LST models 

that were calibrated against a long-term average estimate of the annual LST for the historical period. 

Choosing the members of the ensemble can be a challenging task. Because forming an ensemble with 

more transport formulae than process-based models can bias the results of ensemble toward transport 

formulae limitations. A simple low-computational cost wave transformation method was applied to the 

offshore forcing as northern GC is far away from headlands and the bathymetry is not complicated. 

Using the simple wave transformation for other coastal regions of GC (e.g., southern GC) is not 

justifiable. Hence, a spectral-based wave transformation/hybrid method (e.g., Antolínez et al., 2016, 

2018) is preferred at the expense of considerably higher computational costs. 

      Another limitation of this preliminary study is that the uncertainty associated with the choice of 

parameters incorporated within each LST model (e.g., beach slope, shoreline orientation, sediment grain 

diameter, the shape of coastal profiles) have not been considered. Moreover, uncertainties arising from 

other sources such as emission scenarios, GCMs, and wave transformation methods should be 

addressed. In this way, the overall reliability (robustness) of projections can be determined. Hence, 

some other investigations should be conducted to a more sophisticated framework that yields 

probabilistic results. Such a framework could be developed within coastal management and adaptation 

plans of the study area.  

CONCLUSION 

      In this paper, a preliminary investigation of the uncertainty associated with the choice of LST model 

was presented. In this regard, an ensemble of models, including bulk transport formulae and a process-

based model, was employed. The forcing conditions of the LST models were obtained from the 

projected waves of one GCM-forced wave simulation (under one RCP) that were transferred to 

nearshore using a simple wave transformation method. The results showed that whilst there is variance 

amongst the results of LST models they are all in qualitative agreement with a projected increase in 

intra annual variability and a decrease in the inter-annual variability. The mean of results (ensemble 

mean) shows ~ 11% decrease (compared to the baseline period) in annual and monthly mean LST rate. 

It should be noted that the results of this study are not still applicable to coastal planning, as other 

sources of uncertainty should also be considered to find the robustness of projections.   
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