
Chapter 17 

WAVE   ENERGY   AND   LITTORAL   TRANSPORT 

Jose   Castanho 

Engineer, Beaches  and   Harbors   Division 
Laboratorio   Nacional  de  Engenharia  Civil, Lisboa , Portugal 

1.   GENERAL 

As is known the breaking of oblique waves generates cur- 
rents roughly parallel to the shore line usually designated by long 
shore currents. The intensity of these currents which are pres 
ent almost exclusively between the breaking line and the shore de 
pends on the characteristics of the waves (angle of approach, 
height and period) and on the characteristics of the shore(slope 
and  roughness). 

A certain amount of energy E is transmitted by the break 
ing wave along its direction of propagation. As this is a trans- 
mitted energy, it is possible to speak about its component parai 
lei to the shoreline which would be indicated by E sen a , being 
the angle of approach of waves, i.e. the angle that crests make 
with  the  shoreline . 

Let us consider the breaking line and two near orthogo- 
nals   distant dx from   one   another   (fig.l). 

/—sn shoreline 

breaking   line 

-wave orthogonal 

Fig.l - Sketch  of  wave  attack 

A  fraction  of  the  energy flowing  through  the breaking line 
remains  in   the   longshore   current  from   which it   will  flow   out    in 
a  continuous  or  concentrated form   (rip  currents); another  part 
is  dissipated  by  friction  in  the  bottom whilst the remaining is lost 
by  breaking   (turbulence). 
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The distribution of the difference between the energy flot 
ing in at section I and flowing out at section II by these thre 
fractions depends firstly on the type of breaking (spilling or plun 
ing) and secondly on the characteristics of the wave and of th 
shore. 

That distribution varies also along the zone where the Ion 
shore current is present, i.e. between the breaking line and th 
shore. 

2.   DISTRIBUTION   OF   TRANSMITTED   ENERGY 

2.1 Energy dissipated in friction losses - Let us assum 
that the average velocity V of the longshore current betwee 
the breaking line and the shore* is known. Denoting by k^ th 
friction factor and assuming that the friction force is propor 
tional to the square of the velocity, the energy dissipated in 
beach length dx will be proportional to the third power of th 
velocity  and  can be  written 

E   =  k p V3     dx 

3 (1 

or E   = kpVJ    iL dx 
d m 

where P represents  the unit  mass  of  water,   rn being the slope c 
the  beach and  h  the  breaking  depth. 

Assimilating the breaking waves to solitary waves arrrv 
ing each T seconds (T being the period)xx the transmitted er 
ergy  parallel  to  the  shore,   per  second is 

2, 2g H3 , ,, 
E   =—!—S2  sena cos a    dx (« 
t T 

H  being  the  wave  height. 

According to some authors it is preferable to consider j 
riodic  waves  of  which the  deep-water characteristics are knowr 

(x) For the present purpose it is sufficient to consider an ave 
age value of the velocity of the current. In a more details 
study now under way the variation of the velocity of the long 
shore   current in  the surf zone is taken into  account. 

(xx)Munk: "The solitary wave theory and its application to sui 
problems". Annals of the New York Academy of Sciences 
Vol.51 - 1949 
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Anyhow if these characteristics were known,it would always be 
possible to calculate the solitary wave which each T seconds trans- 
mits the same amount of energy than the periodic wave in deep 
water. 

Therefore we shall continue to assimilate breaking waves 
to   solitary  waves . 

The ratio s, of the energy dissipated in friction losses in 
the bottom (eq.l) and the component of the transmitted energy 
parallel to  the  shore (eq.2)   is 

s= k p V3 h/m   dx (3) 

2,2  gH3 sen a cos a dx/T 

Writing the velocity of propagation of the breacking solitar 
y wave C = vg(h + H) with H = 0 , 78 h and considering the steep_ 
ness  of   the  wave 6=  ~- =  -=^=- ,   equation (3) 

becomes ,     .    , -, 
(v/O3 (4) 

0.38Asen2Ct 

where  A is  the  dimensionless  parameter  A m 6 
k 

2.2 Energy contained in the longshore current - Accord- 
ing to the theory of the solitary wave, the volume of water Q 
leaving the  breaking  wave  in each  strip of  width dx is 

Q = 2h     coscxdx (5) 

V being the mean velocity of this volume of water, its 
kinetic  energy  will be 

E   = JL QV2 (6) 
c       2 

The ratio t of the kinetic energy of the longshore cur - 
rent (eq.6) to the component of the transmitted energy parallel 
to  the  shore  can be  written,   taking    equation(5) into account, 

t= (V/C? { 
0.64   send W) 
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2.3  Energy dissipated in wave  breaking (turbulence)   -    Th 
energy fraction dissipated in breaking is 

r =  100$  -   (s + t)% 

3.    CALCULATION    OP   THE    MEAN    VELOCITY    OF    THE 
LONGSHORE   CURRENT 

Let us apply the momentum method for calculating the mea 
velocity  of  the  longshore  current. 

Being Q the volume of water carried by the solitary bree 
ing wave and C^ the velocity of propagation, the component ps 
allel  to  the   shore  of  the  transmitted  rate of momentum will  be 

Q,  x C,     senacosadx/T 
b b 

V being the mean velocity of the longshore current, the vc 
ume  Qv   keeps  a   momentum  towards  the   shore   equal  to 

Q,  V cos a dx/T 
b 

According  to  the   momentum  theorem, the    variation  of   tj 
rate  of   momentum  is  equal  to  the  friction  force.     Therefore 
will be 

Q, C,   send cos a    Q, V cos a 0   , 
b   b _   b _kpv

2.iL ( 
T T m 

Computing V from equation (8) and substituting its value 
equations (k) and (7), it is possible to determine the values of 
and t, i.e. the fractions relative to the ingoing energy respec 
tively of the energy dissipated in friction losses in the bottom a 
of  the   energy   contained  in  the  longshore   current. 

Nevertheless  if   equation (8)   was  applied  as written abovf 
we   should find  that for  some  values  of        s + t>100$  which is 
possible . 

This lead us to some considerations on the momentum ac 
ally  available  to  generate  the  longshore  current. 

In the present paper only the case of beaches with a ve 
gentle slope (say  2  per  cent  or  less)   will  be   considered,   it  bei 
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assumed that wave breaking is gradual so that the wave resumes 
its shape at each moment, remaining practically symmetric. This 
amounts to assuming that the wave height decreases linearly with 
depth and that the decrease of transmitted energy corresponds 
exactly to the energy progressively lost in wave breaking. The 
wave  height  thus follows   constantly  the  law   H=0.78h. 

In  a  study  now  in  progress  we  have    approached    the  case 
of   a  breaking  wave  giving  rise  to  a  bore. 

Let us  consider then  two  neighbouring  sections    I 
(fig.l).   The  change  of   momentum  between  them  will  be 

and    II 

dM = d(QC) = Q dC +   cdQ 

1 From   Q = 2 h*"  and   C = 1 . 78 g h -$- (solitary  wave), the  ex - 
pressions  dQ = 4 h dh and dC=i Ch-ldh are obtained.   Hence 

rK 

J h„ 

CdO I  1°!°! Q c ; 
2    2' 

rK 

QdC.F(QlCl.Q2C2) 

This lead us to suggest that between sections I and II the 
momentum available to generate the longshore current is only the 
volume d O of water available in the section under consideration 
times the velocity of propagation C, the momentum available bet 
ween the  breaking  line  and  the  shore  being 

I CdQ = 7 QUCU 5      b   b 

I 1 The  amountJ^b Q d C = -= QhC     would  correspond to  a lost 
momentum since the wave flowing out at section II has a veloc- 
ity of propagation C + d C instead of velocity C which corresponds 
to  the  wave flowing in at  section  I. 
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The   momentum  theorem  will be  written now 

Q, C,   sena cosa        Q, Vcosa 0  , 
k       b    b b =kOV2^ (Q 

T T kpV     m (9 

Solving  equation (9)   with  respect  to  V  and  taking into  ac 

that  Q    =2h2,C  =   1.7£ 

dimensionless  equation  results 

count that  Qfe = 2h   , C  =   1.78g h2  and  6= ——-,   the followin 

V 
-~= 1 .30 cosa A 
Gb 

/       1 . 22 tan a 
VI +  - 1 (10 

where A = —— 

Thus  for  a  given  angle  of  approach       ,   the   relative  veloc 
ity   _Y.   is  a function of  the parameter A =  m6   alone. 

Cb 
k 

i+.    CALCULATION   OP   THE   ENERGY   FRACTIONS   DISSI 
FATED   IN   FRICTION LOSSES AND BREAKING LOSSE 

By  substituting the value  of  _V   given by  equation   (10), 

is  possible  to  obtain §_ and t   from  equations   (i+)   and   (7)- 

Figures  2  and 3   show    the values  of  §_ and t for  angles 
10°, 30o,i4.5°,60°   and  80°  in  a function  of  the  parameter A =  EL 

1 

Figure 2 shows that the fraction s of the energy dissipc 
ed in friction losses In the bottom reaches a maximum for a ce 
tain value  of   A which  varies  in  accordance  with 

On the other hand, for values of A not exceeding 0 .3» tl 
fraction s is a function of the angle a , reaching a maximum nee 
k5°  to  60°. 

Figure  3   shows  that  energy dissipated in breaking losses 
always  important (between  85   and 95$)   for angles a =  10°.   Fo 
greater  angles  the fraction r is  important for small values of  J- 
decreasing  regularly as A increases. 
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FIG    2   --PERCENTAGE OF ENERGY DISSIPATED BY FRICTION 

100 

FIG   3  --PERCENTAGE OF ENERGY DISSIPATED BY BREAKING 
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5.    SOLID   DISCHARGE 

For  constant  values   of   rn   and k  the   shape  of    the   curves 

s =  f ( ~,—)   or   s = f ( 6 )   is  very   similar  to  that  of curve   Q     .. , K solid 
= f ( 6 ) .   The   same  applies  to   s = f ( 0. ) ,   a  maximum  being read 
ed between <x= 2+5°  and a = 60°. 

This   seems   to   suggest  that  the   solid  discharge   can be  di 
mensionlessly  expressed  as  a function  of   s_.   In  a first attempt 
Q     ,. ,   could  be  considered  as  proportional  to   s . 

solid — 


