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USE OF A COMPUTATIONAL MODEL FOR TWO-DIMENSIONAL TIDAL FLOW 
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INTRODUCTION 

The numerical solution of tidal hydraulic problems has been greatly fa- 
cilitated In the last decade by the development of high-speed large-memory 
computers. Problems which only could be studied by use of hydraulic models 
can now readily be studied with mathematical models if the computational tech- 
niques for solutions are developed. 

Unfortunately the difficulties in formulating usable methods for these 
complicated problems in fluid dynamics are formidable, particularly if the 
problems are multidimensional in space. As a result the numerical solution 
approach to these hydraulic problems has generally been limited and has not 
kept pace with the increased capabilities of the presently available compu- 
ters. 

In this paper a new approach is given to the solution of two-dimensional 
tidal flow in shallow water. 

THE DIFFERENTIAL EQUATIONS REPRESENTING TIDAL FLOW 

The basis of the computational model for tidal flow is the long-period 
water-wave equations (ref. 1): 

|t + afi^ju + »uh^ai.0 (3) 

Symbols are defined as follows: 

U, V : vertically integrated velocity components in the x and y 
direction respectively 

C : elevation of the free surface over the undisturbed level 
h : depth 
g : acceleration due to gravity 
f : Coriolis parameter 
C : Chezy coefficient 

 sE  
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THE SYSTEM OF THE FINITE-DIFFERENCE EQUATIONS IN TWO DIMENSIONS 

The following notation is used in the approximation of the differen- 
tial equations: 

u(n) = u(jiX) kAy( ^6);  Ax - Ay - As (4) 

where 

(x,y)  = (jAx,  kAy)  and  is a  spatial grid point 

j,k - 0,  ± h,  ± 1,  ± 3/2,   ... 

n - 0,   h,   1,   3/2,  2 

Furthermore, the following notation of averages and differences shown here 
for £, is introduced: 

$.*s h °W+ cj-*,k> <5> 

^x E ^.k - Gj.^k) («) 

Cy s (Cj,k-^ " Cj.k-^ <8) 

*J.k S k ^i-k.k-h + Cj-%,k+* + Cj+%, k-% + ^-rt.fcH^ (9) 

A space-staggered scheme is used where velocities, water levels, and depth 
are described at different grid points (see Fig. 1). This scheme has the ad- 
vantage that for the variable operated upon in time, there is a centrally 
located spatial derivative. 

In time, a multistep operation is used in such a manner that the terms 
containing space derivatives and the Coriolis force are generally taken 
alternating forward and backward. 

The individual operations each have two time levels. The first opera- 
tion is taken from time n to time n+%, and the second operation is taken from 
time n+%  to time n+1. Values of the fields of £» u, and v at time n+i are 
obtained from the fields of Q,  u, and v at time n by an operation which is 
implicit in J and u and explicit in v. Then the fields of £, u, and v at 
time n+1 are computed from the fields of £, u, and v at time n+% by an opera- 
tion which is implicit in C and v and explicit in u. The two sets of dif- 
ference equations of this multioperation method are now written with the equa- 
tion of continuity as the second equation of each set (Eqs. 11, 14), using an 
integer value for j and k and maintaining the velocity gradients in the con- 
vective-inertia terms in differential form within angle brackets < >. The 
effects of bottom roughness are indicated by a function R. Thus, for the 
first operation the equations are: 
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Fig. 1—Space-staggered scheme 
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u<n+*>  - U(n) + k At f7(n>  - k At u(n+*> <|H><n>  - k tt v(n> <^>^ 
Ox dy 

- h £J gfcx - R(x) at j  + %,  k (10) 

c <"+*>)  . c(n) . % A£ [(Ky + ^    <n+*>  . % £ [(H* + ?y)v]  (n) 

at j,  k (U) 

v<n+*> - v<n>  - % At f5(n+%)  - % At 3<n+%> <|><n> 

-% Atv(^> <!><»>  - % M 8C(»)  - »(y)<«*>j,k + % (12) 

For the second operation,   the equations are: 

U(»-H)  = UC^ + h At ^(n+1)  .  % (n+1)   J^n*) 
ox 

- * At ?<-D<^<-*> . % £ gCx(^> . R(x)(^> 

at j + %,  k (13) 

c(n+l)  , c(n+4)  . % |£ [(Hy + ^)u](n+%).  % £ [(Rx + ^^(n+1) 

at j,k (14) 

v(n+l)  = y(n^  . h tt ^(n+%)  _  % ^ =(n+%)<g>(n-^) 

- % At v^l)|>^)  - % || «<«*»  - R(y)<^> 

at j, k + % (15) 

where 

"tSVk.k - 2A7 (uj4#,k  "  Uj-%,k> <16> 

du 1 
<55^>J+%,k = 2As" (uj+^,k+l " "j+^k-P <17> 

0v 1 
<5x>j,k+% = 2As <vJ+l,k+fc" vj-l,kW (18) 

^.fcrt-SS^.k*- Vj,k-%> (19> 
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*(*>(n) - \ * ^(i%lf%    at'+ i-k       (20) 2
 (Ky + f( o(cV 

W 2 (Kx + £y(ti+%))(cy)2 
(21) 

Z (Hy +f (n+1))(CX)2 2 

^ (K
35
 +r *• xcy) 

A special, additional technique will be employed for the computation of the 
nonlinear terms marked with an asterisk. 

Solutions of the Equations (10-15) are found by direct computation or by 
solving systems ot equations which relate water levels and velocities on lines. 

In each of Eqs. (10) and (11) there are three values at the time level 
(n + h)i which are all situated at the line k and have to be computed. Wri- 
ting the continuity equation first and omitting the subscript k, we can write 
Eqs. (10) and (11) in the following form: 

" 1 fs  ^  + CV"]^ - C<**> + | H C(Hy + eVu]]^ = A<
n>     (24) 

2 As 8Cj    + (1 + 4 As VUJ4 " Uj-V uj+%  
+ 2 As  gCj+l  ' Bj+%   (25) 

where 

A<n)=C(n)   -iA£[(k«+Cy)v]» atj.k (26) 2  As 

J-Hl +2LAtf      2As  (Uj+%,k+l       Uj+%,k-l)JV 

Thus, one equation with three unknowns exists for each velocity field point 
(u^+v) and each water level field point (£ ) on a line k.  If a row of N 
walle? level points is on the line and velocities are given at the boundaries 
outside of the water levels concerned, N water levels and N - 1 velocities 
at time (n + %) must be solved from 2N - 1 equations. 
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We now introduce 

1 At 
j      2 As lj+l      2 As 5'   " 

(28) 

(29) 

Equations (24) and (25) can be written in matrix form for a line k, 

assuming that u. , is a given velocity at the lower boundary and U.J , 

is a given velocity at the upper boundary: 

rJ+% 

J+% 

0    -r 
J+% 

J+l 

1 rJ+# 

-h-h \ 

*j 

uj+% 

C
J+I 

[n+%) 

DJ+% 

J+l 

(n) 
*J-k UJ-% 

0 

0 

0 

rI+% uI+% 

(n+%) 

(30) 

where aJ+% 
1+iM 

4 As V
U
J4 " uj-y (31) 

The values of the vector ({ , U
J+L, £T+1> •••> CT) at tfie n + % time 

level can be solved with a limitea number oi operations by a process of elim- 
ination of unknowns.  Starting with the first equation, the water level 
£,  is expressed as a function of the unknown velocity uT.,: J+%" 

<r >=- vJ+f
+«», (32) 

where 

PJ = rJ+% 

+ r (n+%) 
J-% UJ-% 

(33) 

(34) 

Substitution of Eq.   (32)  into the second equation of  (30) gives 

_rJ( Vj+%      + V  + V1 + 4 As(uJ+|      "j-W UJ+%      + rJ+l       CJ+1      " BJ+% 

(n+%) c - ,(n+%)     . or expressing u*  ,       as a  function of Cl,.       gives 
JT? J+l 

(35) 



where 
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uJ+% RJCJ+X     + SJ (36) 

LX + Vj + 4 As  V
U
J4      

U
J-WJ 

B<g + rjQj  
Sj " fl+rP    + ±^ (u<n>  - u<n>)l (38> 

L1 + Vj + 4 As  \UJ+f      VvJ 

Again,  the water level can be expressed as a  function of the next velocity: 

C
J+I ' 'PJ+I

U
J3 

+ QJ+1 (39> 

where 

luL 
J+1   i + rj+^Rj 

(40) 

Generally, the following recursion formulas can be written 

co-*> . _PjU<^> + Qj (42) 

„("+*)  .    „      ,(n+%) 
UJ "RJ-1CJ + Sj-1 

(43) 

where 

Qj = (A5n>+rj-%sj-i)/(i + rj-%Vi> <45) 

*j-vi/cl + rj'j+i4i<uJ(J-ujS)] (46) 

sj" »& + rjV/C1 + VJ + i fs <"U - US>] (47> 
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the other bound is reached.  If uj£p' is a given velocity, the last two 
factors computed are Pj and O..  Since Eq. (42) expresses g, as a known 
function of the velocity "J+i^ , Ci can be computed, and all water levels 
and velocities can be found in descending order by use of Eqs. (42) and (43). 

The nonlinear terms in the continuity equation which are marked with 
an asterisk can be computed on their proper time level by an iteration 
procedure. The first estimate of J*    is made by the implicit procedure 
of taking the nonlinear term at the time level n. Next, the value £   ' 
thus computed is used in Eq. (11) for the actual computation. This itera- 
tion can be repeated several times. Use of the mathematical model, however, 
indicated that no gain in accuracy is obtained. 

The velocity in the other direction at the time ieve''' n + ^ can De 

found explicitly from Eq. (12), since the velocity u^n' in the Coriolis 
term is already known.  Eq. (12) can then be written: 

(v(n) - A Ut f + i AE /v(n)    . v(n)   n=(n+*> . I M  (n» 
(n+%)  lv    2 LAt * +2 As  -l+l.k+%   1-1.k^J"      2 As SS J 

2 At 8 ._x  ,y(n+%)." y.2 + 4 As CVj,k-»#-  VJ,k-VJ 
2     (H*+5'^UTV)(C') 

at j, k + h      (48) 

For the second operation, going from the time level n + %  to n + 1, Eqs. 
(14) and (15) are solved implicitly in the same manner as described for 
Eq. (10) and (11). Finally, the velocity in the x-direction can be compu- 
ted explicitly from Eq. (13). It can be seen that no more than two suc- 
cessive fields have to be stored in the computer memory, as only the lat- 
est information available is necessary to compute the next step. 

The coefficients for the recursion formulas in the y-direction are 

pk - W(1 + rk-%"k-i> (49> 

% - <Akn+%) + vA-iW + VA.i> <50> 

h - <%) • w*+ Vk+i S «2$* - v£*)]        <52> 
where 

A(«H*>   . c<»**>       lAi[(Ky+^)u]n+%      atj>k 
"k b 2 As (53) 
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B(n+%)  = v(n+*0  _  1 c 1 At      (n+A>)       _     (n+^)    . ,g<n+%) 
k+% V 2 lW  £ + 2 is  C  J+l,k+fc      Vj-l,k+¥J 

- 1 At gv^^V + (v(n4%))2 atj    k+i            (54) 2§               ;Kx+^(n+%))(cy)2 atj>k + 2             (54) 

The recursion formulas in the y-directton are 

4n+1) - -v&1}+ \ <55> 

V, 
(n+1) =     (n+1) + 
k-% \-l<k' +Sk-1 <56> 

The explicit operation for the u velocity becomes 

(n+1) _ u 

{,<»«> 4 ^ f -if(u;g+1 - u;^>,i>iv(n+1) - in ^r}} 
[i + i At gy(u<^>)2

: <^+y +1 g (u;^> - «j#>] 
(fiy +Cx(n+i;)(Cx)/ 

(57) 

The formulas developed above cannot be used directly in this form 
for electronic computation. Coding in FORTRAN presents problems, as co- 
ordinate description of the variables can be made only on integers, and 
mteger-and-one-half values do appear in the formulas developed. Multipli- 
cation of all coordinate descriptions of the points by a factor of two 
would eliminate this problem; however, such a lattice system is uneconom- 
ical from the point of view of memory use of the computer because not all 
locations of an array u, v, £ and h would be used. 

It is possible to give each of the variables u, v, £ and h a separ- 
ate coordinate system, which would result in a good use of memory and would 
also allow coordinate description on integers. The computational formu- 
las for these special coordinate systems and the computation program are 
presented in Ref. 2. 

STABILITY, DISSIPATION AND DISPERSION 

One of the requirements of the numerical solutions of the equations 
is that the obtained solutions converge to the solutions of differential 
equations. Also, the solutions should be stable. This can be investigated 
by following a Fourier expansion of a line of errors as time progresses. 
If this line of errors (error wava) grows with time, the computation 



1412 COASTAL   ENGINEERING 

becomes unstable and dominates the solution.  If, on the other hand, error 
waves will be damped heavily if computation progresses, then, components 
of the waves which we try to represent by the numerical procedures will 
be damped also and possibly in a degree which is not in agreement with the 
solutions of the differential.equations.  Such a numerical scheme is dis- 
sipative. An investigation^ ' of simplified sets of difference equations 
(10) through (15), indicates that the multioperation method is uncondi- 
tionally stable and not dissipative. 

Numerical procedures however, have influence on the phase speed of 
the wave. This effect is called dispersive. The discreetness of the 
representation of the waves in time and in two spatial dimensions, influ- 
ences this effect. Fig. 2 shows the computed wave velocity versus the 
wave velocity of the partial differential equations as function of spatial 
representation for a given ratio of time and spatial gridsize. The direc- 
tion of the wave compared to the grid influences this ratio.  If more than 
thirty points are used to represent one wavelength on the spatial grid, 
then the difference between computed wave velocity and the wave velocity 
of solutions of the partial differential equations are less than 1%. 

NUMERICAL EXPERIMENTS 

The model was tested by comparing measurements with computational 
data.  The mouth of the Haringvliet in The Netherlands was used (Fig. 3) 
since detailed measurement of tidal levels and currents were available, by 
The Netherlands Rijkswaterstaat, and in addition this area had large var- 
iations in depth over short distances. A grid size of 400 m with a compu- 
tational array of 31 by 55 points was chosen. As an aid in the evaluation 
of the results, a plot program was developed for the display of currents 
and water levels at certain times of the computation (Fig. 4). The values 
of the Chezy coefficients were then adjusted until a good agreement was 
found between measured and computed velocities and water levels (Fig. 5). 
A detailed description of these experiments can be found elsewhere(^). 

As a final check of the general computational procedures developed 
during the experiments with the Haringvliet area, a tidal computation was 
made of the southern North Sea (see Fig. 3). The gridsize used is 5600 m. 

The northern boundary of the model was described at four locations 
as a time function of the water levels. Other points of this boundary 
were computed by linear interpolation or extrapolation (Fig. 6). The 
southern boundary in the English Channel was described at the coasts as 
a time function of the water levels, and the intermediate points were com- 
puted by interpolation. 

In the southwestern part of The Netherlands, currents in the differ- 
ent parts of the estuaries of the Rhine and Schelde were used for the bound- 
ary. Tidal data for the period from 0.00 hr (Middle European Time), September 
13, 1958, were used for computation.  Some adjustments were made at the be- 
ginning and end of this period in order to make all tidal curves a complete 
cycle over this period. The half time step of each operation was taken at 
5 min. The C values were computed every half hour (real time) on the loca- 
tion of the water level as a function of the average depth at that moment. 
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i i i i i i i i i i 

Fig. 3—Location of Haringvliet and North Sea computational models 
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Fig.4—Haringvliet (estuary of the Rhine) 
Situation 15.6 hr (real time) after start of computation 

Bottom   Field of the computation and  comparison  between measured  velocities and 
computed  velocities.   The measured velocities are average velocities of 
similar tidal  cycles at a particular  location, while the computed  velocities 
are the average velocity in an 800-by-800-m area of a particular tidal  cycle. 

Top        Isometric sections representing  computed water  levels on every fifth  line of 
the  bottom graph. 
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Gage No. 7 Comparison between measured data ( — ) and computation (+0 +) 
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Fig.6—North Sea computed water-levels and currents 
on September 12,1958 at 20.00 hr 
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Fig. 7—I so high-tide levels and times on September 12, 1958 

Fig. 8—I so low-tide levels and times on September 12, 1958 
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Computations were started with all water levels and velocities taken 
at zero. The water levels and currents at the open boundaries were in- 
creased from zero with five steps into the given tidal curve.  The start- 
ing disturbance disappeared after approximately 14 hr. 

The locations of equal high-tide levels (co-range lines) obtained from 
the results of this computation are shown in Fig. 7, together with the ar- 
rival times of the highest water levels (co-tidal lines). Figure 8 shows 
the same for the low tides.  In these two figures a counterclockwise rota- 
tion of the vertical tide may be seen. The water level information shown 
in Figs. 7 and 8 concurs with tidal information presented by Defant(3) 
as to phases and amplitudes of the tides. 

The maximum magnitude of the computed currents such as shown in Fig 6 
agrees with information given on tidal charts, but no detailed analysis has 
been made of the phase and amplitude of these currents with respect to such 
information. Water levels and currents along the coast are not accurate 
as the grid size is too large for a good representation, and also more ac- 
curate input data is needed for these computations. 

CONCLUDING REMARKS 

It has been shown that the propagation of long waves in coastal waters 
can be studied successfully by use of a numerical integration method. The 
multioperation method developed is characteristic of implicit methods; name- 
ly, there is no upper limit on the time step for stability reasons, as is 
the case with explicit methods. The multioperation method allows a direct 
and rapid solution of all velocities and water levels on each time level. 

The multioperation method described is particularly suitable for 
long-wave computation in coastal waters, where water movements are intro- 
duced by changes in the water level (or currents) along the sides of the 
model and where the effect of bottom friction is larger than the effects 
of lateral eddy viscosity, which is neglected. 

The contribution of the convective-inertia terms in the equation of 
motion is assumed to be small compared to that of other terms. These terms 
are represented with a lower order of accuracy. 

(2) 
The detailed description of computational procedures   permits an ex- 

pedient introduction of geographic features such as water depth, boundar- 
ies, and characteristics of bottom roughness for the modeling of wave pro- 
pagation in hydraulic engineering research. 

Generally, information concerning the magnitude of the effect of bot- 
tom roughness is inadequate.  In some cases, like the Haringvliet model, 
the water movements are influenced by bottom roughness to a considerable 
extent.  In such a case, the parameter C has to be found in an iterative 
manner by comparing computed results with actual field measurements.  The 
rate at which the model can be adjusted to resemble the prototype depends 
on the extent of available field data and on the experience of the engin- 
eer making the investigation and his insight into the physics of the wave 
problem and into the behavior of the method of numerical solution. 
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