CHAPTER 24

Computation of Combined Refraction - Diffractian
by
J.C.W. Berkhoff,
Delft Hydraulics Laboratory, Mathematical Branch, The Netherlands

Abstract

This paper treats the derivation af a two-dimensional differential equation, which describes the phenomenon of cambined refraction - diffraction for simple harmonic waves, and a method of solving this equation. The equation is derived with the aid of a small parameter development, and the method of solution is based on the finite element technique, together with a source distribution method.

Introduction

It would greatly help designers of harbaurs ond offshore structures if it were passible to get same quantitative information about the wave penetration ond wave height which can be expected in the harbour and around the structures. For simple harmonic linear water waves mathematical models exist in the case of diffraction $[3,4]$ or refraction $[5,7]$ separately. The combined effect in the cose of long waves is described by the linear two-dimensional shallow water equation $[10]$, but for short waves the describing equation has not yet been derived. Batties [1] proposed a set of equations fram which the equation derived in this paper differs in one term.

Independently of the writer of this paper Schbnfeld [8] derived the same equation written in another form and obtained in a different way. Solving the equation and treating the boundary conditions in the horizontal plane is possible in various ways. This paper gives a method which solves the equation in an area in which the combined effect of refraction and diffraction is impartant, with a finite element technique $[12]$ and treats the Sommerfeld radiatian condition $[9]$ with a source distribution method [4]. Numerical results in the case of Tsunami response of a circular island with parabolic water depth [11] , propagation of plane waves over a parabolic shoal, and response of o rectangular harbour with - constant slope of the bottom ore given and compared with analytical or numerical results from other methods. The accuracy of the numerical treatment is not yet known in detail and will be the subject of further study, so the interpretation of the results must be done with care. An attempt was made to compare the results for short waves over a parabolic shoal with measurements by Holthuysen [6]

Derivation of the equation

The theory will be restricted to irrotational linear harmonic waves, and loss of energy due to friction or breaking is not token into account. A two-dimensional equation which is applicable to woves in the range from shallow water to deep water has been derived by means of o small parameter development and on integration over the water depth.

Basic equatians

The equatians with which the derivotion starts ore:
(i) The three-dimensional patentiol equatian

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0 \tag{1}
\end{equation*}
$$

(ii) The linearised free-surface conditian far harmonic waves

$$
\begin{equation*}
\frac{\partial \phi}{\partial z}+\frac{\omega^{2}}{g} \phi=0 \quad \text { ot } z=0 \tag{2}
\end{equation*}
$$

(iii) The battom condition

$$
\begin{equation*}
\frac{\partial \phi}{\partial z}+\frac{\partial \phi}{\partial x} \frac{\partial h}{\partial x}+\frac{\partial \phi}{\partial y} \frac{\partial h}{\partial y}=0 \quad \text { of } z=-h(x, y) \tag{3}
\end{equation*}
$$

with x, y : harizantal caardinates.
z : vertical coardinates.
$\varnothing \quad: \quad$ three-dimensianal velacity patential.
ω : angular frequency.
g : accelerotian due ta gravity.
h : woter depth.

Dimensianless caordinates
\backslash

Intraduce dimensianless quantities with the aid of a vertical length H (mean water depth) and a harizantal length \mathcal{L} (wove length carrespanding ta H)

$$
x^{\prime}=x / \lambda ; \quad y^{\prime}=y / \lambda ; \quad z^{\prime}=z / \lambda ; \quad d=h / H
$$

The equatians written in these dimensianless quantities are:

$$
\begin{aligned}
& \Delta^{\prime} \phi+\frac{\partial^{2} \phi}{\partial z^{\prime 2}}=0 \\
& \frac{\partial \phi}{\partial z^{\prime}}-\delta \phi=0 \quad \text { at } z^{\prime}=0 \\
& \frac{\partial \phi}{\partial z^{\prime}}+\mu\left(\nabla^{\prime} \phi \cdot \nabla^{\prime} d\right)=0 \quad \text { at } z^{\prime}=-\mu d \\
& \Delta^{\prime}=\nabla^{\prime 2}=\left(\frac{\partial^{2}}{\partial x^{\prime 2}}+\frac{\partial^{2}}{\partial y^{\prime 2}}\right) ; \quad \nabla^{\prime}=\left(\frac{\partial}{\partial x^{\prime}}, \frac{\partial}{\partial y^{\prime}}\right) \\
& \delta=\frac{\omega^{2} \lambda}{g} \text { and } \mu=\frac{H}{\lambda}
\end{aligned}
$$

Gradient of the bottom

Instead of the horizontal length λ it is more correct to use the horizontol length L (see figure 1 for the definition) as a characteristic length corresponding to the slope af the bottom.
If $\bar{x}=x / L$ and $\bar{y}=y / L$ then $\nabla h=\gamma \vec{\nabla} d$ with $\gamma=\frac{H}{L}$ and $\bar{\nabla}=\left(\frac{\partial}{\partial \vec{x}}, \frac{\partial}{\partial \bar{y}}\right)$.
Assume ($\bar{\nabla} d, \bar{\nabla} d)$ and $\bar{\nabla}^{2} d$ are of order one.
Now

$$
\nabla^{\prime} d=\frac{\lambda}{H} \nabla h=\epsilon \bar{\nabla} d
$$

and

$$
\left(\epsilon=\frac{\lambda}{L}\right)
$$

$$
\nabla^{\prime 2} d=\epsilon^{2} \bar{\nabla}^{2} d
$$

(From now on the primes will be omitted for simplicity in notation.)

Power - series

Assume the potential function ϕ has the farm

$$
\phi(x, y, z)=Z(d, z ; \mu) \varphi(x, y, \sqrt{\epsilon} z)
$$

or

$$
\begin{equation*}
\phi=Z(d, \zeta ; \mu) \quad \varphi(x, y, \nu \zeta) \tag{7}
\end{equation*}
$$

with $\zeta=z / \mu$ ond $\nu=\mu \xi^{\frac{1}{2}}(=H / \sqrt{\lambda}$ L) , φ will be developed into a power - series with respect to $\nu \zeta$

$$
\begin{equation*}
\varphi=\varphi_{0}(x, y)+\nu \zeta \varphi_{1}(x, y)+v^{2} \zeta^{2} \varphi_{2}(x, y)+\ldots \ldots \ldots \ldots \tag{8}
\end{equation*}
$$

The porometer μ can vary independently from the parometer ν between zero (shollow water) and infinity (deep water). Assuming that the function Z is such that for small values of μ the derivatives with respect to d are of order μ^{2}, then $\frac{1}{\mu^{2}} \frac{\partial Z}{\partial d}$ and $\frac{1}{\mu^{2}} \frac{\partial^{2} Z}{\partial d^{2}}$ are finite for every value of the parometer $\mu(0 \leqslant \mu<\infty)$.

Substitution into the boundary conditions

Substitution of (7) and (8) into the condition (6) using the relation

$$
\begin{equation*}
\nabla Z=\varepsilon \frac{\partial Z}{\partial d} \bar{\nabla} d \tag{9}
\end{equation*}
$$

gives in the limit $\nu \rightarrow 0 \quad$ the results:
(i) $\quad \frac{\partial Z}{\partial \zeta}=0 \quad$ at $\zeta=-\mathrm{d}$
(ii) The odd numbered functions φ_{k} are identically zero.
(iii) The even numbered functions φ_{k} can be expressed in the function φ_{0} with the aid of recurrence relations.

Substitution of (7) and (8) into the condition (5) gives

$$
\begin{equation*}
\frac{\partial Z}{\partial \zeta}=\delta \mu Z=0 \quad \text { at } \zeta=0 \tag{I1}
\end{equation*}
$$

As the unknown functions the two-dimensionol potential function φ_{0} and the function Z remain.

Substitution into the differential equation

Remembering the previous assumption obout the function Z, substitution of (7) and (8) into the differentiol equotion (4) gives in first opproximotion for small values of ν the equation:

$$
\mu^{2} Z \Delta \varphi_{0}+\frac{\partial^{2} Z}{\partial \xi^{2}} \varphi_{0}=0
$$

or

$$
\begin{equation*}
\frac{\Delta \varphi_{0}}{\varphi_{0}}=-\frac{1}{\mu^{2} z} \frac{\partial^{2} Z}{\partial \xi^{2}} \tag{I2}
\end{equation*}
$$

The left-hand side of equation (12) is a function of x and y only, so the right-hond side also must be a function of x and y only.

Now put

$$
\begin{equation*}
\frac{1}{\mu^{2} Z} \frac{\partial^{2} z}{\partial \xi^{2}}=X^{2}(x, y) \tag{13}
\end{equation*}
$$

with \mathcal{X} an arbitrary function of x and y onl y.

The function Z

Equation (13) together with condition (10) and the imposed condition $Z=1$ at $\zeta=0$ gives the solution:

$$
\begin{equation*}
Z=\frac{\cosh \{X \mu(\zeta+d)\}}{\cosh \{X \mu d\}} \tag{14}
\end{equation*}
$$

Dispersion relation

The function X (dimensionless wave number) is fixed by equation (11) which results in the dispersion relation

$$
\begin{equation*}
\delta=K \tanh \{K \mu d\} \tag{15}
\end{equation*}
$$

The dispersion relation is the same as is given in the theory with a constant water depth. The wave number X is the real root of equation (15) and will now be a function of x and y correspanding to the local water depth d.

The function φ_{0}

To get an equation for the two-dimensional function φ_{0} in a higher degree of approximation than is given by equation (12), equation (4) is integrated with respect ta ζ fram $-d$ to zero after multiplicotion with the function Z. With the aid of the relations

$$
\int_{-d}^{0} z^{2} \frac{\partial^{2} \varphi}{\partial \xi^{2}} d \zeta=\left.z^{2} \frac{\partial \varphi}{\partial \varphi}\right|_{\zeta=-d} ^{\xi=0}-\int_{-d}^{0} \frac{\partial \varphi}{\partial \zeta} \frac{\partial z^{2}}{\partial \xi} d \zeta
$$

and

$$
\int_{-d}^{0} z \varphi \frac{\partial^{2} z}{\partial \xi^{2}} d \xi=\mu^{2} x^{2} \int_{-d}^{0} z^{2} \varphi d \xi
$$

the power - series development of the function φ and the recurrence relations between the even numbered
functions φ_{k}, the integrated equotion becomes

$$
\begin{align*}
& \left(\int_{-d}^{0} z^{2} d \xi\right) \Delta \varphi_{0}+K^{2}\left(\int_{-d}^{0} z^{2} d \zeta\right) \varphi_{0}+\frac{\nu^{2}}{\mu^{2}} \frac{\partial}{\partial d}\left(\int_{-d}^{0} z^{2} d \zeta\right) \\
& \left(\nabla \varphi_{0} \cdot \overline{\nabla d}\right)+O\left(\nu^{2}\right)+\frac{1}{\mu^{2}} O\left(\nu^{4}\right)=0 \tag{16}
\end{align*}
$$

The function φ_{0} must be o solution of this equation. Now

$$
\int_{-d}^{o} z^{2} d \zeta=\frac{n \delta}{\chi^{2}{ }_{\mu}} \quad \text { with } n=\frac{1}{2}\left(1+\frac{2 \chi_{\mu} d}{\sin h\left\{2 \chi_{\mu} d\right\}}\right) \text {, }
$$

ond the following relation exists between the porameters δ and μ according to the definition of λ and H (see figure 1):

$$
\begin{equation*}
\delta=2 \pi \tanh (2 \pi \mu) \tag{17}
\end{equation*}
$$

So for smoll volues of μ the integral $\int_{-d}^{0} z^{2} d \zeta$ is of order one. A distinction is now mode
three cases: between three cases:
Case A: Assume $\mu \geqslant 1$. In practice this is the case of "deep" woter, giving no voriotion in the wave number. Neglecting the terms of the order $O\left(v^{2}\right)$ gives the equotion in dimensional quontities:

$$
\begin{equation*}
\Delta \varphi_{0}+\frac{\omega^{2}}{g} \varphi_{0}=0 \tag{18}
\end{equation*}
$$

which is the diffraction equotion for deep water.
Case B: Assume $\mu=\nu \ll 1$, which means the woter is shollow, and neglect ogain terms of the order $O\left(\nu^{2}\right)$. It is eosy to see thot in this cose $Z=1+O\left(\nu^{2}\right)$ and the dimensionless wave number $x=\frac{2 \pi}{\sqrt{d}}+O\left(\nu^{2}\right)$.

In dimensional coordinates and variables the equation (16) becomes

$$
\begin{equation*}
\nabla \cdot\left(c^{2} \nabla \varphi_{0}\right)+\omega^{2} \varphi_{0}=0 \tag{19}
\end{equation*}
$$

with $c=\sqrt{g h}$ (phase velocity).
This is the linearised shallow water equation.
Case C: Assume $\nu<\mu<1$ and neglect in equation (16) terms of order $O\left(\nu^{2}\right)$. The resulting equation in dimensional quantities is:

$$
\Delta \varphi_{0}+k^{2} \varphi_{0}+\frac{k^{2}}{n} \frac{\partial}{\partial h}\left(\frac{n}{k^{2}}\right)\left(\nabla \varphi_{0} \cdot \nabla h\right)=0
$$

or, written in onother form,

$$
\begin{gather*}
\nabla \cdot\left(c c_{g} \nabla \varphi_{0}\right)+\frac{\omega^{2} c_{g}}{c} \varphi_{0}=0 \tag{20}\\
\text { with } c=\frac{\omega}{k} ; c_{g}=n c \quad \text { (group velocity) } \\
\omega^{2}=g k \tanh (k h) ; n=\frac{1}{2}\left(1+\frac{2 k h}{\sin h\{2 k h\}}\right)
\end{gather*}
$$

Properties of equation (20)

Equation (20) changes into the well-known diffraction equation in the case of constant water depth and is also usable in the limiting cases of deep and shallow waters. Substitution of the expression $\varphi_{0}=a e^{i S}$, where a is the amplitude and S the phase of the wave, gives the equations:

$$
\begin{equation*}
\frac{1}{a}\left\{\Delta a+\frac{1}{c c_{g}} \nabla a \cdot \nabla\left(c c_{g}\right)\right\}+k^{2}-(\nabla s \cdot \nabla s)=0 \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \cdot\left(a^{2} c c_{g} \nabla S\right)=0 \tag{22}
\end{equation*}
$$

Abstract

If the term between curly brackets in equation (21) is neglected, the refraction equations remain [5]. Equation (20) therefore contains all limiting situations as special cases and is generally applicable.

Batties [1] gives the equations:

$$
\frac{1}{a} \Delta a+k^{2}-(\nabla S \cdot \nabla S)=0 \text { and } \nabla \cdot\left(a^{2} c c_{g} \nabla S\right)=0
$$

as the describing equations for the refraction - diffraction phenomenon. The combination of these equations, however, does not pass into the linear shallow water equation when the water depth is small.

Method of Solution

General description:

The solution of the differential equation (20) in an arbitrary area can be found by minimizing the corresponding functional over the area, taking into account the conditions at the boundaries, i.e., full reflection at rigid walls and the Sommerfeld condition at sea. The solution at sea, where the water depth is assumed to be constant, will be a superposition of the incident and an outgoing wave which is caused by the presence of the harbour or an obstacle. This outgoing wave will represented by a superpasition of waves from point sources at the boundary between the sea and the area of interest. The solution at this baundary must be continuaus with respect to wave height and phase.

The functional

The functionol which must be minimised to get the solution in area I in which the water depth is varioble (see figure 2) reads [2] :

$$
\begin{equation*}
J=\frac{1}{2} \iint_{1}\left[c c_{g}\left(\nabla \varphi_{1} \cdot \bar{\nabla} \varphi_{1}\right)-\omega^{2} \frac{c_{g}}{c} \varphi_{1} \bar{\varphi}_{1}\right] \quad d x d y \tag{23}
\end{equation*}
$$

The overbar denotes the conjugote complex value. Minimizing (23) gives a solution with the natural boundary conditions:

$$
\frac{\partial \varphi_{1}}{\partial n}=0 \quad \text { at } \Gamma_{1} \text { and } \Gamma_{2}
$$

If the boundary condition at Γ_{2} is $\frac{\partial \varphi_{1}}{\partial \mathrm{n}}=\mathrm{f}$, the following term must be added to the functional J [2] :

$$
\begin{equation*}
-\frac{1}{2} \int_{\Gamma_{2}}\left(f \bar{\varphi}_{1}+\bar{f} \varphi_{1}\right) c c_{g} d s \tag{24}
\end{equation*}
$$

Saurce distribution
In area II, where the water depth h_{a} is constant, the solution con be written in the form

$$
\begin{equation*}
\varphi_{1 \mid}(P)=\tilde{\varphi}(P)+\int_{\Gamma_{2}} \mu(s) \frac{1}{2 i} H_{0}^{2}\left(k_{0}^{r}\right) d s \tag{25}
\end{equation*}
$$

with $\ddot{\varphi}$: The potential function of the known incident wave.
$\mu(s)$: The strength of a source distribution an the baundary Γ_{2}.
H_{0}^{2} : Hankel function of the second kind.
k_{0}° : Constant wave number.
r : Distance from point P to the point M at the boundary Γ_{2} (see figure 2).
$i \quad: \sqrt{-1}$.
Formulation (25) gives a solution in area II that satisfies the Sommerfeld rodiction condition. From this expression it con be derived that

$$
\begin{equation*}
\frac{\partial \varphi_{11}}{\partial n}=\frac{\partial \tilde{\varphi}}{\partial n}-\mu(P)+\int_{2} \mu(s) \frac{\partial}{\partial n}\left[\frac{1}{2 i} H_{0}^{2}\left(k_{0} r\right)\right] d s \tag{26}
\end{equation*}
$$

if the point is situated on the boundary $\Gamma_{2}[3]$.

Continuity conditions

Taking together the two continuity conditions between the solutions φ_{1} and φ_{11} at the boundary Γ_{2}

$$
\begin{equation*}
\varphi_{1}=\varphi_{11} \quad \text { and } \quad \frac{\partial \varphi_{11}}{\partial n}=\frac{\partial \varphi_{1}}{\partial n} \quad(=f) \tag{27}
\end{equation*}
$$

the problem is well-defined and the unknown functions $\mu(s)$ and $\varphi_{1}(x, y)$ can be found.

Numerical method

The functional written in real terms $\left(\varphi=\varphi_{1}+i \varphi_{2}\right)$ reads:

$$
\begin{align*}
& J=\frac{1}{2} \iint_{11}\left[c_{g}\left\{\left(\frac{\partial \varphi_{1}}{\partial x}\right)^{2}+\left(\frac{\partial \varphi_{1}}{\partial y}\right)^{2}+\left(\frac{\partial \varphi_{2}}{\partial x}\right)^{2}+\left(\frac{\partial \varphi_{2}}{\partial y}\right)^{2}\right\}\right. \\
& \left.-\omega^{2} \frac{c^{c}}{c}\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)\right] d x d y-\int_{\Gamma_{2}} c c_{g}\left(f_{1} \varphi_{1}+f_{2} \varphi_{2}\right) d s \tag{28}
\end{align*}
$$

Thenumerical treatment is based on the finite element method to find the minimum of the functional [12]. Now area 1 is split up into elements of triangular form and the functions φ_{1}, and φ_{2} are approximated in each element by a linear expression. As the treatment of both functions φ_{1} and φ_{2} is the same, in the following the subscript will be omitted. After the linear approximation of φ, the functional will be a function of the M nodal values $\varphi_{1}, \varphi_{2}, \ldots \ldots \ldots, \varphi_{M}$. The functional must be minimal with respect to variation in these values, so

$$
\begin{equation*}
\frac{\partial J}{\partial \varphi_{m}}=0 \quad m=1,2,3, \ldots \ldots \ldots, M \tag{29}
\end{equation*}
$$

This gives a set of linear equations in the unknown nadal values. The function f is also unknawn, and therefore the integral will be approximated by a summation aver N segments in which $c c_{g} f$ is assumed ta be a constant and equal to the value in the centre point P (see figure 4).

Figure 4

With the aid af equations (26) and (27) the unknawn values f in the N points P on the boundary Γ_{2} can be expressed in terms of the strength μ of the source distribution:

$$
\begin{equation*}
(f)_{p}=\left(\frac{\partial \tilde{\mathscr{P}}_{n}}{\partial)_{p}}-\mu(P)+\sum_{k}^{N} \mu\left(P_{k}\right) \frac{\partial}{\partial n}\left[\frac{1}{2 i} H_{0}^{2}\left(k_{a} r_{P P_{k}}\right)\right] L_{k}\right. \tag{30}
\end{equation*}
$$

The cantinuity condition for the wave height gives the additional set of equatians ta provide $M+N$ equations in the $M+N$ unknown values $\varphi_{1}, \varphi_{2}, \ldots \ldots \varphi_{M}$ and $\mu_{1}, \mu_{2}, \ldots \ldots, \mu_{N}$:

$$
\begin{equation*}
\frac{1}{2}\left(\varphi_{P_{i}}+\varphi_{P_{i}}\right)=\mathscr{\varphi}(P)+\sum_{k=1}^{N} \mu\left(P_{k}\right) \frac{1}{2 i} H_{o}^{2}\left(k_{0} r_{P P_{k}}\right) L_{k} \tag{31}
\end{equation*}
$$

The value of φ in the source point P is approximated by the average of the values in the twa neighbouring nodal points P_{i} and P_{i} on the boundary Γ_{2} (see figure 4). The full set of equatians, which must be solved ta get the complex values φ and μ in the nodal and source points respectively, becames in matrix natation:

$$
\begin{align*}
& A \underline{\varphi}+B \underline{\mu}=r \tag{32}\\
& D \underline{\varphi}+T \underline{\mu}=\underline{s}
\end{align*}
$$

$\underline{\varphi}$ is the vectar of the unknawn complex values $\varphi_{1}, \varphi_{2}, \ldots \ldots, \varphi_{M}$ and $\underline{\mu}$ the vectar of the strength of the source distribution in the N source points on the baundary Γ_{2}.
A is a real symmetric $M \times M$ matrix with a band structure generated by the finite element methad.
B is a camplex $M \times N$ matrix which has non-zera values in the raws correspanding with the nadal points on the boundary Γ_{2}.
D is a real $N \times M$ matrix generated by the averaging procedure in equatian (31).
T is o complex $N \times N$ matrix with coefficients consisting of Hankel functions according to equation (31). The known vectors \underline{r} ond s are provided by the indicent wave $\underset{\varphi}{\sim}$ This system of equations is solved by a direct solution method. First the vector μ is computed according to

$$
\begin{equation*}
\underline{\mu}=\left(T-D A^{-1} B\right)^{-1}\left(\underset{s}{s}-D A^{-1} \underline{r}\right) \tag{33}
\end{equation*}
$$

and then the vector φ follows from

$$
\begin{equation*}
\underline{\varphi}=A^{-1} \underline{r}-A^{-1} B \underline{\mu} \tag{34}
\end{equation*}
$$

In computing the decomposition of the matrix A, the symmetrical band structure of the matrix hos been taken into account.

$\xrightarrow{\text { Results }}$

It is not the intention of this poper to give accurate solutions of some of the problems but more to show the possibilities of the method of solution which has been described.

The quantitative aspects of the accurocy of the method will be the subject of further study.
(i) Tsunami response for a circular island

A good comparison with other computations without large computing time can be obtained in the problem of tsunami response for a circular island with a parabolic bottom profile. Vastano and Reid [11] have solved this problem with a finite difference technique and compared their results with analytic solutions. The results of the method given in this paper are shown in figures $5-9$.

Figure 5 gives the configuration of the finite elements in the area of variable depth. First the problem with a constant water depth has been computed to check the method of solution (figure 6) and then the problem with a parabolic bottom profile has been solved and compared with the results of Vastano and Reid (figure 7). It has still to be seen whether the accuracy of the method is better when the wave length becomes greater with respect to the size of the elements.
(ii) Propagation of tsunami waves over a parabolic shoal

The influence of ashoal with parabolicbottom profile on the propagation of tsunami waves has been computed and the results are given in figures $8-10$. Figure 8 indicates how the area of variable depth hos been split up into triongular elements. Figures $9-10$ show lines of equal phase and amplitude. The phase of the wave is expressed in degrees, so a difference of 360 degrees corresponds to one wave length.
(iii) Propagation of short waves over a shoal

An interesting problem with respect to the combined effect of refraction and diffraction of waves is the propagation of short waves (short with respect to the size of the disturbance of the boftom) over a shool with a parabolic bottom profile, because the presence of a caustic curve (see figure 1I) following from the refraction theory is an indication that diffraction effects cannot be neglected. An attempt was made to compare the results in this cose with the measurements of

Halthuysen [6]. To save memory and camputing time the area, which has been split up inta finite elements, was reduced ta a circle segment with an angle at the tap af 60 degrees (figure 12). It was assumed that the salution at the boundary $A O$ (see figure 11) daes nat deviate from the salution fallawing fram the refractian theary (ray-methad) accarding to the measurements. The solutian af the raymethad has been impased as a baundary canditian an the baundary $A O$, and the results af the camputatian are given as lines of equal phase (fiure 13), lines of equal amplitude (figure 14) and lines af equal water elevation at some time (figure 15). A goad camparison with the measurements aver a large area was nat possible because of the lack af infarmation about the phase and because of the unreliability of the quantitative results af the measurements in an area above the shal. Qualitatively the computer results seem reasanable.
(iv) Respanse of a rectangular harbaur

The last problem of which the results will be given is the response af a rectangular harbaur with a constant slope of the bottam. The amplitude of the standing, wave in the centre line of the harbour is given for different slapes af the battom in figure 16. In the first instance the wave height in the harbaur decreases as a result of the increasing slope of the bottom, but with a slope of $1 / 3$ the phenamenion of resonance of the harbaur becames impartant.

References

1. Batties, J.A.
2. Courant, R. and Hilbert, R.
3. Daubert, A. and Lebreton, J.C
4. Delft Hydraulics Laboratory
5. Delft Hydraulics Laboratory
6. Holthuysen, L.H.
7. Keller, J.B.
8. Sch Bnfeld $^{\text {, J.Ch. }}$
9. Sommerfeld, A.
10. Stoker, J.J.
11. Vastano, A.C. and Reid, R.O.
12. Zienkiewicz, O.C., Taylor, C. and Patil, B.S.

Refraction of water waves; Proc. Am. Soc. Civ. Eng., 94, WW 4, Nov., 1968, pp. 437-451.
Methods of mathematical physics, Volume I; Inferscience Publishers Inc., New York, 1962.

Diffraction de la houle sur des obstacles a parois verticales; La Houille Blanche, 20, numero 4, 1965, pp. 337-344,
Computation of the phenomenon of diffraction (in Dutch); Research report S5-1, 1969.
Wave refraction; derivation and numerical solution of the refraction equations; Research report S5-11, 1970.
An investigation of two-dimensional weve propagation problems; Report R 1971/10/H, 1971, Delft University of Technology.
Surface waves on water of nanuniform depth; Journal of Fluid Mech., 4, no. 6, 1958, pp. 607-614.
Propagation of iwo-dimensional shart waves; Delft University of Technology, manuscript (in Dutch). PartielleDifferentialgleichungen der Physik, Akademische Verslagsgesellschaft, Leipzig, 1958.
Water waves; Interscience Publishers Inc., New York, 1957.

Tsunami response for islands, Verification of a numerical procedure; Journal of Marine Research, 25, No. 2, 1967, pp. 129-139.

Harbour oscillation; a numerical treament far undamped natural modes; Proc. Inst. Civ. Engrs, 43, 1989; pp. 141-155.

A	matrix	Γ_{1}, Γ_{2}	boundaries
a	amplitude		parameter (H / L)
B	matrix	Δ	Laplace operator
c	phase velocity	δ	parameter ($\omega^{2} \lambda / g$)
c_{g}	group velocity	ϵ	parameter (λ / H)
D	malrix	K	dimensionless wave number
d	dimensionless depth	λ	mean wave length
f	function	μ	parameter (H / λ)
9	gravity constont	$\mu(\mathrm{s})$	strength of the source distribution
$\mathrm{H}^{\text {a }}$	mean water depth	\underline{H}	vector of strength of the sources
$\mathrm{H}_{0}{ }^{2}$	Hankel function	ν	parameter ($\mathrm{H} / \sqrt{\lambda \mathrm{L}}$)
h	water depth	\varnothing	three-dimensional potential function
i	$\sqrt{-1}$	φ	two-dimensional porential function
J	functional	$\ddot{\varphi}$	potential of incident wave
k	wave number	$\varphi_{1}+\varphi_{11}$	potential functions in areas 1 and 11
k_{0}	constant wave number		respectively
	horizantal length	$\underline{\varphi}$	vector of values of φ in the nodal points
L_{k}	length of $k w t h$ segment	ω	angular frequency
M	number of nodal points	ζ	stretched vertical coordinate z / μ
N	number of source points	∇	nabla operator.
n	shoaling factor		
$\underline{\square}$	normal vector		
$\stackrel{\square}{\square}$	known vector		
S	phase		
s	distance along the boundary		
$\stackrel{5}{5}$	known vector		
T	matrix		
x, y	horizontal coordinates		
z	vertical coordinate		
z	function		

Tsunami response for a circular islond
41dap quolsuoz kq apnt! duud aADM

> Figure 8 Long wave prapagation aver a shoal Canfiguration of elements and dimensions

Figure 9
Lines af equal phase
Variable depth $(50 \leqslant h \leqslant 4000 \mathrm{~m}) ; T=720 \mathrm{~s}$

> Figure 14
> Short wave propagation over a shoal
> Lines of equal amplitude

Figure 13
Short wave propagotion over a shoal
Lines of equal phase

[^0]
[^0]: Figure 16
 Wave amplitude for different bottom slopes

