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ABSTRACT 

Energy dissipation and wave height attenuation were analysed 

theoretically for surface waves propagating against uniform flow.  Energy 

dissipation was estimated from evaluation of work "by internal and boundary 

shear stresses.  Experiments were conducted in a test flume of 20m long, 

0.8m wide and 0.5m high. Results showed that tested values of rate of 

wave height attenuation were comparable with theoretical values. 

INTRODUCTION 

When waves travel against current, wave energy is transfered from 

current by so called radiation stress at the one hand, but is dissipated 

by internal and boundary shear stress at the other hand.  Thus the wave 

height variation in the course of travelling against the current is 

effected by these two controversing action and as the result, wave height 

may be increased in some time or may be decreased in othertime owing to 

their relative magnitude.  In deep water, the shear stress can be neglect- 
12 3)    h) 

ed, for which several investigators such as Unna ' '  , Yu  , Longuet- 
5) 6) 

Higgins & Stewart  , and Witham  have contributed.  In shallow water and 

especially in estuary, the shear stress cannot be neglected.  The friction 

factor for a current superimposed by waves was, due to the auther's know- 
7) ledge, firstly treated by Ivar G. Jonsson  theoretically as, 

f   =    u*>    f   + H f (i) 
w+c  U + U.  wo   U + U.  c ^   ' 

b b 

where U, U mean current velocity and maximum amplitude of velocity of 

waves respectively, f  means a friction coefficient of waves in case of 

no current and f means that of current in case of no waves.  In this 
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606 COASTAL ENGINEERING 

paper, energy dissipation was estimated from evaluation of work "by 

internal and boundary shear stresses. 

Experiments were conducted in a test flume of 20m long, 0.8m wide and 

0.5m high. 

Analytical results showed that the attenuation rate due to boundary 

shear was nearly constant over full range of current velocity, "but effect 

"by internal friction become remarkable as the opposing current velocity 

increased. The latter dominated tendency of total dissipation. 

THE ENERGY EQUATION FOR WAVES RIDING OVER CURRENT 

The motion to be discussed will be assumed to occur in two dimensions 

on incompressible fluid. 

Space co-ordinates x  and y  are chosen along and perpendicular to the 

bottom respectively (Fig. l). 

Basic equations for unsteady disturbance riding over uniform flow are, 

,te , „.3(U+M) „„.„ 0  1 dp       1 ^ + (u+iOf1 + v- 3* 'ix 

u +  (u+u)i^ + v^ = 

dx      Sy 

where u  and V  are the 

components of disturbance 

velocity in x  and y 

directions respectively, 

U is the current velocity 

and is assumed as a 

function of y  such as 

U.f.iy)  in which U. means 

the velocity at y=h,   p, 

g,  8, p and T denote 

density, accerelation of 

gravity, angle of bottom 

to the horizontal, 

pressure intensity and 

shear stress. 

If x is considered 

3in e "fife 

p ty 

P 32/' (2) 

(3) 

"/'/'AVA^/Vv? y/A\v 

Flg.l 
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to be the sum of shear stress due to current T  and that due to disturbance 

TW, then gradient of xc in y  direction is compensated with p<ysin 0 when 

flow is uniform without waves, because then remaining terms beside <?sin 8 

and ^° are all vanished in eq.(2). 
p dy 
Eq.(2), then, becomes 

£+  (V+u& + uia±ui =_i|£ + l|lw (2). 
3i 3a; ty p   3x       p   oy 

Combination of eqs.(2)',   (3)  and  (U)  and integration from zero to h+f] with 

respect to y leads to the  following equation for average values  over 

a period, 
h+7 h+7 

^ |(u2 +1? )dy+|P?n2 } + |^ \{£(u -vi hV+cg(.y-h)}u&y 

,^+J        »     „ ->    •, *h+l     -ITT ,!•+'' 

•UT^+^)Ud^+ Uh+' Mp^2 >+ [}lv Iay = $. Ml^ (5' 
where bar means average over a period, h is the undisturbed depth and r\ 

is the surface elevation, and in the derivation of eq.(5), the surface 

condition (6) and the bottom condtion (7) are used with taking cos 8 as 

unity. v = in + (u+u)|a  at y=h+n (6) 

•0  = 0 at j/=0 (7) 

As U^+ is approximately equal to U^+ti—|  , , the fourth term in the 

left side of eq.(5) is written as — (ip<?n Ui) to the second order in the 

amplitude. 

The last term is written as follow, 

rh+' 3U.    rh — 3U,   ~; 3U> 

and is zero to the second order in the amplitude "because ud  is zero. 

Consequently eq.(5) is written as follows 

J_rU 
at ( \ |<uW )dy+|P£?r,

2 ] + ~ i\ {| («2+y2 )+P+P^(y-i^) toy 

+ ^ j(U
2

+U
2)Udji+|Pf?n2UT1 ) = ^ugw dy (8) 

In eq.(8),  the term in the first bracket  is the energy density E.     That  in 

the  second bracket  is the energy flux and is  expressed by E-CQ'  physically, 

where CQ is the energy transfer velocity.     Then the physical expression of 

eq.(8)  is  simply as, 
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If *&*•<*>-S.«g»* & 
The term in the right side is the dissipated energy E^. Evaluation of E 

or E-Cg must he given hy disturbance velocity (u,v), pressure p, surface 

elevation n with current velocity assumption U.  Strictly to say the 

energy transfer velocity is not necessarily equal to the group velocity 
8) in general, which is defined by 

cr = 4^ do) t»   dm 

where m  is the circular wave numher 2ir/L and L is the wave length. As 

this caluculation is very troublesome, C' is approximated by Cn  in the 

following.  Then, 

S+i<^ = C"l^ (9)1 

Furthermore, E is approximated as that of regular sinusoidal waves, 

E = j^pgX2 (11) 

where H denotes wave height. 

The term in the right side is dissipated energy E^ and contribution 

to this term is partly due to those in main part, E and partly due to 

in the boundary layer, E . 

For steady flow with regular waves, the first term in (9)' vanishes 

and putting -2E-G for the right side of eq.(9)'s eq.(l2) is obtained. 

fU -2E.£- (12) da;     CG 

as CQ is constant. 

Then, 
2G 

E = %0e~CQ
X (13) 

H = H0e~c^ Uh) 
Eq.. (13) gives the rate of energy dissipation.  Eq.(llt) gives the wave 

9\ 
height attenuation. O/CQ  gives the physical meaning of Inman's a,.1 

Then, 

G = -2iH4> =-x^(sdi+gdB) 
(15) 

in which 

Eai=i"^     and    SdB=-i(V
dJ/ (l6) 
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where 6 is the depth of the "boundary layer.  Evaluation is now to "be 

divided into the main part of flow and the boundary layer. 

DERIVATION OF WAVE DISTURBANCE ON CURRENT 
IN THE MAIN PART 

As shown in Fig.2 local disturbance (u,v)   is assumed to be the sum 

of disturbance velocities (u  >u ) neglecting effects of boundary layer 

due to the wave motion and that (a ,v   )  to be corrected for effects of 

"boundary layer.  Then, 

u  = u1m2  ,   V = vx+v2 (17) 

To evaluate E  in the main part of flow, u  can "be replaced by u. 

estimated to be, 

3u, 
^ = pE5^ 

where e is the eddy 

viscosity and is 

assumed as 

in which U^ is the shear 

velocity and K is the 

Karman's universal constant. 

Then E1T is dl 
approximated as, 

dl~ 
3MI > 

uiJ^ipzW)dy 

=tP5,H  'Gl     ^20^ Fig-2 

Derivation  of   (u1,v1)  neglecting effects  of boundary layer due to the 

wave motion is the next problem.     For this purpose linearized equations  of 

(2)'and  (3)  are used.     Then, 

,3M,    ,   ..   3U 1 _3_p 
p   3x 3t 

+ U; 

Oh 
at 

"Zx 

,3fi 

dx 

3U 

111 
P   3y 

(21) 

(22) 
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and linearized surface conditions are 

fS^lg-"!    1       t   „ <*» at w=« 

If + °l|f - "l« ' <<*> 
where Uj is the current Telocity at y=h  as already mentioned. 

The stream function i|i is introduced as 

Ml ' "^   Wl  " 3^ (25) 

Elimination of p between (21) and (22) leads to the equation 

(1_ + ^v^ _ Uir(y)|t = o (26) 

in which V =3 /3a; +3 /dy    and the primes denote differential with respect 

to y. 

Putting 

* = ${y)eim{x-Ct) (27) 

and substituting  (27)  in  (26) 

li.(m2+J!ifWH = 0 (28) 
3^2       Ul/(j/)-c 

As $(0)=0 from the bed condition (7), the solution of eq.(28) is 

»(y) = A sinh ^ ^j^^gy-^-^t) dt (29) 

where A is constant to be determined. 

Substituting $(y) =  £(Ui//gh)-$n(y)   in eq.(29), and equating 

coefficients, the solution becomes as follows to the first order of Ui/Sgh. 

,r\       «r   •   x.         .   Ui f*/"(v)sinh m(y-t)sinh mt,,x /,-\ i,(y) = A{smh mj/ +—^ •<—^-jj-^jpg At) (30) 

T,        j.4.. H    im(x-ct)     .   .       , .   .     ,   „ (,,| By putting n=?-e , A is  obtained from  (23)   as, 

. _H  Ui^C  (31) 

smh 
x.n ,Ulfhf"(^)sinh m(fo-t)sinh rat  ,,-. 

mhil+m )       (Ui/(t)-C)sinh mh at> 

Now the current field is assumed to be logarithmic in the main part 

and to be linear in the viscous sublayer.  Thus, 

j(5.5+^ln^)U*=Ui+H*ln|   (*/s<#<fc) (32) 

" \2* y (o<y<ya) (33) 

where K is the Karman's constant (=0.U), U* is the shear velocity, v is 
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the kinematic viscosity coefficient  and y    is the depth of viscous 

sublayer. 

yB   = ii-6 £ (3k) 

Then,   from  (30),   (3l)  and   (32), 

U^f sinh m(y-t)   sinh mt 
,   , KmJy.fC-U1-(U,t/K)ln (t/7z)}t2sinhm,y  ~" ,   ,> KmJy.tC-^-dJg/icjln   t/7z)}t2sinhm/ 

U^ft sinh m{h-t)  sinh mt 
Km\jC-U1-(Uj}^K)ln(t//2)}t2sinh mfe' 

From  (25),   (27)   and  (35),   «i   and V\  are  obtained as   follows, 

H    m(C-Ui )cosh mil _   /   » /     „,> 
<i   = ^r   — r-M—, a-'Fi   a cos m(x-Ct) 1       2 sinh ra/j i" 

(37) 

H    m(C-Ui )sinh my _   ,   •,   .       ,     _,> ,,„, 

where 

,    JJJJ C cosh m(ii-t)  sinh mt , 
,   > <mJyTc-U1-(U^/K)ln(tM)}tiicosh myat ,      « 

lW _U^ fh        sinh m(h-t)   sinh mt ~ kJy; 

Kmjyi{C-U1-(UJf/tc)ln(t//j)}t2sinh m/z 

Elimination of p between  (21)  and  (2U)  leads to the  following 

equation. 

Substituting   (35)   in   (Uo),   C  is  obtained as 

„ _ TI        ULtanh rnh +   /U^tanh mh-?-tcrtanh mh ,,    . 
c " ul   " 2*m/zF1(/i) " /(2<mto'1(fe)J+ m F^/j) (kl) 

Using eq.(lO),   the  group velocity CQ  is  derived as 

'^ g+{l+D1(C-U1)Hg-(C-U1)(U)f/<^)}l 

+D1(C-U1)-D2}{3-(C-U1)^+!?J (1*2) 

Ct} = Ul+ tf+U+D, (C-S'lHa-fC-D, )(Ui/K/!)}[l2m/jCOSech 2ff* 

where 

Ujtf  sinh m(h-t)  sinh mt 
KmJy,{C-U1-(uic/K)ln(t/7i)}

2t2d* 

Slnh m^.l,tC-U1-(U,/K)ln(t/Wt
2^ 
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" <"   cosh m(h-t)   sinh mt 
m  J„{c-u1-(ujt/K)in(t//i)}

2t2 ap (lt3) 

, U„f  cosh m(h-t)  sinh mt  ,, cosh mh+-M-\  7—7;—,„ , ,  / , „ ,-, ,?dt 
KmJ»,{C-Ui-(U#/K)ln (t/h)}tA 

, ?  1 ,U*f  icosh 2m(?i-t)-(/z-t)cosh Zmt+h  , , 
coshzmn+r*-\  .„ TT     ,„   ,   N ,   / , ,, »1 ,7 dt 

D    _  2KJ>,      {C-Uj-tU^/ic) \n{t/h)}tz  
2 , ?  , ,U„      "      , r      cosh m(h-t)  sinh mt    , , 

cosh^m«+-J*cosh mh\   rcr-r;—/..   /,\,—/, /t, u ,2  dt 

.  , ?  ,   U^f"tcosh 2m(h-t)+(h-t)cosh 2mt-h ,. 
 2K-),,      {C-UI-CU^/K) ln(t/fc)}tz  

•   , 2„i ,U»   •  ,      1 rh    sinh m\M-t)  sinh rot ~    , ,, , > 
sinh TW2+-* sinh m« I 7^-r;—/..   ,   •,,—/ , „ x •, ,?  dt (44) Km j {C-Ui-lU^/Kjln (t/h)itz 

Evaluation of S       is now capable "by putting   (19)   and  (37)   into   (20) 

and approximating  5  as yg.     Thus, 

' = JJl_   f mlC-Vj)  l2 

2Kqh \   .  ,      ,   U„rh    sinh mjh-t)  sinh mt    ,,7J 
sxnh ^^^{^FiTr^T^TT^yTtr" 

x(5i^)^{&{c-u1-(u,/K)ln(2yA)}^)slnh "» + 

ry      sinh m{y-t)   sinh_m_t       -,2.3,, 
+ ^{c-u^Cu^/KjinCy/Wlt2 di) ay 

1 

U,(h-J'8
)^^{c-U1-(U),/K)ln(J/e/fc)}j/i 

)3lnh 2^sJ     t^) +P 

DERIVATION OF WAVE DISTURBANCE IN THE BOUNDARY LAYER 

In the "boundary layer, eq. (2)' can be linearized as, 

Putting eq.. (17) into (1*6) and using eq.. (21), the following equation is 

derived. 

"duo   .   ,,3"2  1 3 ,  Saoi nl7| 
%t   +U^ =7T»(pe3^) ( T) 

in which y2 and du\/dy  are neglected. 
r. -u 4--J. -.-•     " i(mx-bit)   .     n„K Substituting U2=ui& in (47; 

!<#> + -^2 = ° (M) 

Expanding u^  as a power series of Ux/C and substituting in (H8), the 

following equations are obtained. 
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A. (E^2o) + ^       0 (u9) 
dy    dy 2 

From eq.(l8), e is assumed as 

r     v for  O4 2/4 ys (51) 
£ KUSI/ for ysi y (52) 

because y/h <<  1. 

Substituting in (1*9) and (50), the equations to "be solved are 

||^+fu2o  =  0 for0^ii/s (53) 

l%b  +IMB  +i^   Ij o forjs£j (5U) 
^•>j^ 7J   ri7J krTI..   7./      ^ ^ b— 

i2£ 
dy2 y dy KU* y 

^V21^?,"20 *°r °s.viva        (55) 

d2«9i    ,   1 du2i       it    !• iu    ID- <•„,,..,, fc£i ^ ^if1 ^»/"^,iV2»     for ^      (56) 

The boundary conditions are 

"20 = -«i(0) = -uQ      at j/=0 (5T) 

u21 =0 at y=0 (58) 

where 

u2o>   du2o/|3-J/>  M215   d«2i/di/ are to be  continuous 

at  y=ys respectively (59) 

In addition to them,  u2o 
an^ "21  •ist be bounded at  large y. 

The  solutions become  finally as, 

u = ul  + u2  = Ui  + ReUu2o+(U1/C)u21 )e I 

t, H'0
!(2B2'

/^7hos&^y -2/)+-^=Hi' (262>^;)sin6i(j/s-y) 
M1 " M°ReU-.•,,„„  r,-7-^ Ho   (282^)cosB1i/s+ei-2^H:i' (262/^)3^6^5, 

{(H0" (262/yi   )cosB1(t/s-J/) 
{H;

I;
 (2B2^)cosBiys+^-Hi" (2B2^)sinBiS/s}2 

+  MF"'
1
" 

(2B2^   )sing1(s/e-2/))^^-)(H^) (262^"s)cos6i(j/s-f;) 

+ —%=Hi" (262^"s   JsinB^j/  -C))sinBi5d5 
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where 

+ M^S
HiU {2fi^)sin^ye^y'^K' (262^)0036! (ya-5) 

,-^-H?' (2S2v^)sine1(^-5))sin61(j/-S)d5}jei(m-U*)l 

for  CK t/^ i/ (60) 

"1 *oRe   [ 
H• (262^) 

H• (2g2/57)cosBi2/s+-^rHi1> (262v^)sinBi^s 
Pi v^S 

Ho   (262^) ^'(§)(H• (2B2^~s)cosBi(^s-?) 
6j !  

{H• (2g2^-s)coSB1l/s+g-^rgH(
1

1, (2B2/7s)Sin6l2/s}2 

+/yTTHl   (262-/^)sin61(2/s-?))sin3i5dC 
pi vy.?  

^2    S'(-f)H»»(2B2v^)(4» (2B2^)H<2) (2B2/?) 

2 HJ? (2B2^)cosBl2/s+-%rHi') (2g2/^,)sinBn/s 

-Hg'(2g2/t7)H^" (2B2/?))d?^i(ma;-^) j. 
> 

,    ,-JL 
3!  =/IeH 

KU« 

(61) 

(62) 

in which H^' (z)  and H^' (z)  are the first  and the  second kind of Hankel 

function respectively. 

From eq.(l6),   (17)  and  (18), 

dB 
= -i"ik (<-ff )(% ~ S^h<^u^ (63) 

in which the second term is derived from eq.C*7) and vanishes due to the 

wave periodicity. Assuming that du±/dy  is approximately equal to zero in 

the layer and 3u2/3t/ is approximately zero at the outer edge of the layer, 

E  "becomes from eq.(63) as, 
dB 

3", 1  „2 
dB W"l^lj/=0 =t

P!?Hl °2 
(6U) 
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^^(C-UiJFito)^  fJo   (^^sinB^-J^H- (232^)=osBl,s 

2g      sinhmfo 
H• (aB2^)eosB1j/8+rS5-.H

(i> (2B2v^)sinBlys 

f (-§•)«' (2B2'^)eosB1(ys-C)+gYfrsHi
) (262>^)sinBi(ys-5))

2<iS 

H<J> (2B2^)cos31jys+^^gH
ii1! (2B2^)sinB1i/s)

2 

(65) 

Thus, the rate of the wave height variation can be calculated from eq.(llt) 

"by using eq. (1*2) for CQ, eq.(l*5) for Gi and (65) for G2 , in which 

G = Gj + G2 (66) 

is used. 

EXPERIMENT 

A glass walled flume, 20m long, 0.8m wide and 0.5m high shown 

in Fig.3 was used for experiments.  Flow was circulated and regular waves 

were generated by a plunger type generator from the most downstream end. 

Velocities were measured by a propeller type current-meter in which 

electric pulses were transduced by a photo-electric cell for each rotation 

of the propeller.  An electric resistance type wave gauge and an electro- 

magnetic oscillograph were used to record water surface.  To avoid errors 

due to difference of characteristics between different gauges, only one 

wave gauge was used to measure waves at different points, for which 

a gauge carrier on wheels was used.  Wave heights at each points were 

determined by averaging those of eight waves which become steady just 

after the beginning of movement of the generator. 

As shown in Table-1, surface velocities were between  6 cm/sec and 

3 3 cm/sec and undisturbed depth was in the range between 10 and 15 cm. 

Wave periods were 0.85~1.25 sec and wave heights were l~k  cm.  Water 

temperature was adjusted between 13 C and 16 C. 

Fig.1* shows the wave height variation with travel distance, which is 

exponential as shown eq. (l^t). 

Fig.5 shows the relationship between the rate of wave height 

attenuation aL„= — L0 and Ui/C0 in which C0 and L0 are the wave celerity 
LG 
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and the wave length without current.  Full lines represent theoretical 

results for the water temperature of 15 C.  White circles are experimental 

values. 

It is shown that the rate of wave height attenuation "becomes larger 

as the opposing current velocity increases.  The attenuation rate due to 

boundary shear a2  is nearly constant over full range of current velocity. 

Although as shown "by CIJLQ effect by internal friction can be neglected in 

compare with that by boundary shear when the current velocity is small, 

the former becomes remarkable as the opposing current velocity increases, 

which dominates tendency of total dissipation. 

However evaluation of energy dissipation in the boundary layer is 

too low which suggests turbulence due to wave motion must be analysed. 

Fig.5 shows velocity distributions calculated in the boundary layer. 

As given in eq.(31) and (32), discontinuity is shown at y=yq- 

However ys  is too small to give serious effects by this continuity. 

CONCLUSION 

Mechanics of energy dissipation of waves traveling against currents 

are analysed theoretically in this paper.  The rate of energy dissipation 

or wave height attenuation is given physical meaning by eq.(l^). 

This is the ratio of the dissipated energy and the energy transfer 

velocity. 

Energy dissipation in the boundary layer is nearly constant over 

full range of current velocity.  Effect of internal eddy viscosity is 

negligible when current velocity is small, but become remarkable as the 

opposing current velocity increases.  In this case, this internal eddy 

viscosity dominates thendency of total dissipation. 

The effect of the wave motion on turbulence in the boundary layer 

is not treated in this paper.  However experimental results showed they 

should be taken into consideration. 
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TaMe-l 

h 
(cm) 

T 
(sec) 

Ul 
(cm/sec) (cm) 

a-l (cm    ) 
Temp. 
(°C) 

10.0 0.85 6.3 2.02 0.79X10-11 14.2 
10.0 0.94 6.4 1.45 2.13 15.3 
10.0 0.94 6.4 2.16 1.85 15.3 
10.0 0.94 12.0 1.53 1.91 14.4 
10.0 O.96 33.2 1.63 4.51 14.3 
ll.lt 1.02 16.1 1.91 1.37 16.0 
10.0 1.05 12.0 1.63 3.29 14.4 
11.4 1.05 23.1 3.15 4.26 16.0 
10.0 1.07 6.3 2.42 2.27 14.2 
10.0 1.08 33.2 1.66 4.53 14.3 

10.0 1.10 10.4 1.48 2.11 13.2 
10.0 1.10 10.4 2.04 1.68 13.2 
12.0 1.15 23.1 2.71 3.15 16.O 
12.0 1.15 23.1 3.33 3.77 16.O 
11.5 1.15 27.1 2.92 4.89 10.8 
10.0 1.25 10.4 1.70 2.54 13.2 
10.0 1.25 10.4 2.13 1.81 13.2 
10.0 1.2>t 33.2 1.38 6.42 14.3 
15.0 0.85 6.3 2.34 0.52 14.1 
15.0 0.85 13.1 1.37 2.09 14.9 

15.0 0.86 14.6 2.36 2.14 14.3 
15.0 0.84 19-5 1.33 2.68 15.1 
15.0 0.84 19-5 2.12 3.48 15.1 
15.0 0.83 20.3 1.49 2.97 15.0 
15.0 0.85 29.4 1.36 2.76 15.0 
15.0 0.95 6.3 1.91 1.74 14.1 
lit.8 0.94 13.1 1.21 1.54 13.1 
15.0 0.95 14.6 1.95 2.67 14.3 
15.0 0.94 16.9 2.07 3.88 12.4 
15.0 0.94 19.5 1.37 2.42 15.1 

15.0 0.93 20.3 1.72 2.11 15.0 
15.0 0.94 29.4 1.50 2.64 15.0 
15.0 1.05 6.3 2.16 1.91 14.1 

15.0 1.06 13.1 1.20 1.61 15.0 
15.0 1.05 19.5 1.44 2.75 15 .a 
15.0 1.06 20.3 1.86 2.71 15.0 
15.0 1.08 14.6 1.47 3.00 14.3 
15.0 1.08 16.9 3.46 2.72 12.4 
15.0 1.23 6.3 2.00 0.91 l4.l 
15.0 1.24 13.1 1.11 1.33 15.0 

15.0 1.26 16.9 2.15 2.93 12.4 
15.0 1.24 19-5 1.24 1.08 15.1 
15.0 1.23 20.3 2.51 2.11 15.0 
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Ware    height variation with distance 
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Wave period variation with travel distance 




