
CHAPTER 38 

WAVES INDUCED BY NON-PERMANENT PADDLE MOVEMENTS 

by C,Campos MORAES* 

ABSTRACT 

In a flume equipped with an irregular wave maker the motion of the 
paddle and the resulting waves may be thought of respectively as input 
and output of a system which, if linear, is for some purposes described 
by the so-called gain function. 
A theoretical and experimental study of this function is carried out ma 
king use of paddle movements that produce transient surface motion. 

1. INTRODUCTION 

At the Laboratorio Nacional de Engenharia Civil, a new flume was recen 

tly built for reproducing irregular (random) waves (fig.l). Length,width 

and depth of the flume are respectively 50, 1.60 and 1.20 m and the ma 

ximum water depth is 0.8 m. laves are generated by the motion of a paddle 

actuated by a hydraulic jack, which is controlled, through a servo-valve, 

by an electrical signal of programmable characteristics, such as a given 

spectrum, if the signal is stationary, a given amplitude, if it is a si 

nusoid, etc. The structure linking paddle and actuator, a four - bar sys 

tem, is such that the paddle may either be kept normal to the shaft of 

the actuator during motion (translation) or it may undergo a rotation as 

shown in fig. 1. 

For the simulation of sea waves it is necessary to know the relationship 

between paddle motion and generated surface motion. For our purposes it 

is convenient to consider the flume a system for which input and output 

are respectively x(t), the (horizontal) displacement of the actuator 

shaft, and y(t), the water surface at a point, as functions of time. Of 

course, the system will be different for different water depths and for 

different positions of the points A and B in the four-bar structure 

that supports the paddle. In this paper, only the  translation case  is 
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708 COASTAL ENGINEERING 

considered and the water depth is 0.^0 m, unless otherwise stated. 

We assume that the system |x(t), y(t)| is time-invariant. If it is also 

linear, we have 

y(t) = h(t) * x(t) (1) 

where x denotes convolution and h(t) is a function which characterises 

the system. If we put 

G(f) =|TFfh(t)"|| (2) 

where TF indicates Fourier transform, it is well known that 

(i) if x(t) and y(t) are realisations of stationary stochastic processes 

with variance spectra P (f) and P (f), respectively, then 
x       y 

P (f) = G2(f)Px(f) (3) 

(ii) if x(t) and y(t) are transient functions, then 

|TFJy(t)l|= G(f)|Tr[x(t)j| (4) 

(iii) if x(t) and y(t) are sinusoids of frequency f and amplitudes A 

and A  respectively, then 

Ay = G(fo)Ax (5) 

2 
G(f) is the gain function of the system and G (f) is  sometimes  called 

its transfer function. 

Thus, if the system is reasonably linear and if we are able, as  is the 

case, to control the characteristics of the input, a knowledge of G(f) 

will suffice to generate, for instance, waves with a given  spectrum, 

Py(f). 

A relationship of the form (5) for sinusoids has been obtained theoreti 

tally by BiSsel & Suquet (1951), not for each frequency f but for each 

wave number, k. After adaptation for frequency, their formula is plotted 

in fig. 2. This relationship was derived using the linearised Hydrodyna 

mics equations, a simplification we will also adopt. 

Thus, apart from energy losses due to leakage around the paddle edges 

and the like, the problem of determining G(f) may be considered solved 

if for this purpose one may assume that the system |x(t), y(t)| is li- 

near, which allows the use of the formula not only for sinusoids but for 

any movements. This assumption may be studied theoretically making use 

of the solution by Kennard  (19^9) for the linearised equations of Hy 
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drodynamics, precisely in the case of waves generated by paddle movements. 

One procedure is the following: a transient motion of the paddle and 

the corresponding surface profile at a point, computed by Kennard's for 

mula, are considered; these are Fourier transformed and (4) is applied. 

The obtained 6(f) is then compared with the one by Biesel & Suquet. If 

results are similar one may infer that in what concerns the determination 

of G(f) the linearity assumption for the system ) x(t), y(t)J- is justified, 

at least as long as the linearised equations are applicable to water waves. 

Another procedure, this one with approximate results only, is based on 

the fact that, for a time-invariant linear system, if 

x(t) = U(t) (6) 

where U(t) is the unit step function, that is, U(t) = 1  for  t>0  and 

U(t) = 0, for t<0, then 

h(t)=-|f (7) 

and so 

G(f) = TF _dy 
dt •]| (8) 

Kennard's solution does not allow the use of such an input. However, if 

instead of U(t) we use 

0 ,  t < 0 

1 ,  t > T 

with T sufficiently small, then y(t) being the  resulting surface  by 

Kennard's formula, we will have 

m\ G(f) JTFHjf- (10) 

Similar and other procedures may be used for an experimental study in 

the flume using actual records of inputs and outputs instead of theore 

tical inputs and Kennard's outputs. This will permit to see not only 

whether the linearisation of the Hydrodynamics equations is too gross 

an approximation for our purposes, but also whether the linear assumpt 

ion for the system is supported by experimental evidence. Experimental 

tests will also help in judging the accuracy of numerical integration 

necessary for Kennard's formula. 
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2. USE OF NON - PERMANENT PADDLE MOVEMENTS 

We call non-permanent those paddle movements which produce  transient 

surface motion. The importance of such movements in the  determination 

of G(f) and the testing of the system linearity, as described above, re 

suits from several facts: 

(i) with sinusoidal movements the system behaviour as regards linearity 

cannot be tested. Even assuming linearity, many flume  experiments must 

be made to test the appropriateness of the B & S formula. 

(ii) realisations of stationary stochastic processes have the  drawback 

that spectra must be estimated from limited lengths of record. 

(iii) non-permanent motions of the paddle are simpler to use with Kenn 

ard's formula especially those with constant absolute values of the  ve_ 

locity such as are shown in fig. 3, and which for lack of better names 

will be called "impulses" and "steps". 

(iv) these impulses have simple Fourier transforms to apply in CO; the 

steps are such that it is simple to determine -—- for use in (10). 

(v) tests in the flume, with such inputs are quite  simple  to  perform 

and take little time. 

3. THEORETICAL TESTS 

3.1 - Theory 

The two-dimensional surface profile for waves produced by the movements 

of a paddle is, as obtained by Kennard  (19^9) from the linearised Hy 

drodynamics equations and quoted by Madsen (1970), 

v.+co /»t   /.-d 
/  ,.%    2 / ,, I ,  I     coso-(t-T) .cos kx.eosh k(z+d) ,        ,  ,,... 

,(x,t) = - —I dkl dx    dZ Sid  U(Z'°  (11) 

•'o   4>   -fe 

where </(x,t) is the surface elevation on time t and at  distance x from 
V2 the paddle, a=   (gk tanh kd) , k being the wave  number, d is the water 

depth and U(Z,T) is the horizontal velocity of the paddle on instant T 

and on ordinate z. Of course, if there is no rotation, u is independent 

of z. 

We will have then for a step 

( v , T e  (.0,1) 
u(r) =| (12) 

I 0 , T / (0,T) 

and for an impulse 
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v/2 , T 6 (0,T/2) 

U(T) = (- v/2 , T e (T/2,T) (13) 

0   , T / (0,T) 

where v = H/T. 

After some manipulation, we obtain for the surface time profiles at dis 

tanoe x from the paddle 

/. + CO 

n (x,t) = —2— I W(k,x)cos <r(t |-)dk (1*0 
s 7r  I <i 

•'o 

-+CO 

*-J Q(k,x) 
,,+CO 

»». (x,t) = ^- I Q(k,x)sin cr(t |-)dk (15) 

"o 

where subscripts s and i indicate step and impulse  respectively,  and 

1 CTT 
W(k,x) = -:— tanh kd.cos kx.sin —rr-                                                (16) 1     ko- 2 

G(k,x) = -r— tanh kd.cos kx.sin —j-—                 (17) 

The derivative of V    is simple to obtain s      r 

'a if-y 

dt 

rCO 

W(k,x) .CT.sin a(t - —=- 2 )dk (18) 

The Fourier transform of the theoretical input impulse is in absolute 

value 

A(f) = -3M  s-M (19) 

3.2 - Use of Kennard's solution 

To have an experimental equivalent to the theoretical impulse to be used, 

a test was performed in the irregular wave flume with the experimen 

tal impulse shown in fig. 5- The width was the smallest that could be 

achieved by the actuator. In the manner of fig. 3i the values of 

H = 3>l6 cm and T = 0.5^ s were obtained for the "equivalent" theoreti 

cal impulse. As there were actual records from the flume at distances 

x = 5 m and x = 29 m from the paddle, Kennard's theoretical outputs were 

then computed by formula (15), for these distances, using Simpson's rule 
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for the numerical integration. After some trials, the upper limit of in 

tegration and the step size were chosen to be 0.8 and 0.0005 respective 

ly, the length unit being the centimetre. 

Comparison of the theoretical (fig. 4) and the experimental (fig. 5) 

outputs for x = 5 m shows good agreement in periods and heights, except 

perhaps in the shorter periods towards the end. Tor x = 29 m agreement 

was still good in the longer periods but worse in the end as there was 

earlier dampening in the experimental record. This was ascribed to the 

numerical error in the integration and studies were confined to the 

x = 5 m case. 

Bo comparison was made of surfaces produced by steps, as in the theore 

tical case there was no intermediate surface computation. The derlvati 

ve of the surface was obtained instead by formula (18). 

3.3 - The theoretical gain function 

The function G(f) was computed by (4). for x = 3 m from the theoretical 

impulse mentioned in 3.2, that is, with H = 3>l6 cm and T = 0.5^ s. The 

Fourier transform of the corresponding Kennard surface profile was com 

puted by the FFT algorithm.|TFx(t)  is given by (19). G(f) values are 

plotted in fig. 6 (squares). G(f) was also computed by (10) for x = 5 m 
dy 

from a theoretical step with H = 1 cm and T = 0.05 s. ^  was  obtained 

by (18) with a numerical integration similar to the  impulse  case. The 

Fourier transform was also computed numerically by the FFT algorithm and 

and the resulting G(f) values are plotted in fig.  6  (circles).  It is 

seen that the G(f) values obtained by two procedures through Kennard's 

formula agree quite well with the Biesel-Suquet curve  for  translation 

which is also shown in fig. 6. The points resulting from the step (cir 

cles) show some dispersion, perhaps due to the fact  that  (10) is merely 

an approximative formula. 

This good agreement seems to indicate that if the linearised Hydrodyna 

mics equations are a sufficiently good approximation, then the  system 

jx(t), y(t)} may be taken as linear. 

In the following section some experimental results are now presented. 

k.   EXPERIMENTAL TESTS 

4.1 - Preliminary tests 

For the determination of the gain function there had been some prelimi 

nary tests with sinusoids and white  noise,  that is,  with permanent 
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paddle movements. In what concerns spectral width, this corresponds to 

the use of two extremes: inputs with extremely wide and extremely narrow 

spectra. 

Thus, for frequencies in the range of interest, that is, up to 2.0 cps, 

sinusoidal inputs of several amplitudes were used. The corresponding 

G(f) values, computed by (5), for x = 29 m are plotted in fig. 7- The 

scatter reveals that in practice there is some non-linearity in the sys 

tem jx(t), y(t)l in what concerns multiplication by a constant. However 

the overall agreement is good at least for f £l,5 cps. 

The white noise was provided by a white noise generator with an upper 

frequency limit of 1.5 cps , which is still within the range of inter 

est. Nevertheless the test was made, input and output spectra were esti 

mated and G(f) was computed by (3), also for x = 29 m, and plotted in 

fig. 7. What small energy there was in the input above 1.5 cps still pro 

vided some points for f>1.5 cps, which however should be viewed with 

some reserve, as according to Tick (1963), when computing the transfer 

function one should "use inputs that were rich in all frequencies of in 

terest to obtain proper estimates". 

The agreement between the two sets of points is good until f»1.3 cps. 

Above this frequency the G(f) values obtained through white noise fall 

rapidly below the theoretical value of 2 ops. This may be due to two 

facts: (i)G(f) estimates are poor because of the 1.5 cps limitation of 

the available white noise; or (ii) there is in practice a lack of linea 

rity which is specially felt above 1.3 cps. This seems to be related to 

the already mentioned differences between experimental and Kennard sur 

faces in the shorter periods and is probably caused by energy losses due 

to the variations of velocity and acceleration that occur in irregular 

waves. 

k.Z  - Experimental tests with non-permanent paddle movements for compa- 

rison with theory 

In the experimental test referred to in 3.2,  with an impulse  (test 

nQ.101) records were made at  distances x = 5 nil x = 19 m and x = 29 m. 

G(f) was computed by (k)   for the three distances. All Fourier transforms 

including that of the input were calculated numerically. 

Results are shown in fig. 9- 

(1) -In fact there were greater upper limits, but the next one available 
was 5 cps, already too high to use as input for the actuator. 
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Let us consider for the moment only the 29 m G(f) values. It is seen 

that the experimental values while showing reasonable agreement until 

f « 1.6 cps then fall well below the theoretically obtained ones. It 

should be noted that theoretically and in practice the input energy will 

not reach zero values before about 4 cps and that at 2 cps the input 

energy is still about 40 percent of its maximum. Thus it seems that the 

fall in 6(f) values is real, above 1.6 cps, that is, it must be explai 

ned at least in part by a lack of linearity in the higher frequencies. 

Eesults from the experimental step shown also in fig. 5 were not good 

enough. The derivative of the function represented by the record was com 

puted and then Fourier transformed to obtain an approximation of G(f) 

according to (10). Results, shown in fig. 8, were not good, probably be 

cause the width T = 0.27 s of the step was too large, although it was 

the smallest the equipment could produce. The theoretical step, which 

gave reasonable results, had one fifth of the width. 

4.3 -  Tests with non-permanent movements for studying the influence  of 

certain parameters on the experimental gain function 

4.3.1 - Variation along the flume 

Fig. 9 shows the variation along the flume of the gain function G(f) as 

computed from records made at 5 m, 19 m and 29 m from the paddle in test 

no. 101 (fig. 5)- There is a distinct dampening of G(f) as x increases 

which may be ascribed to energy losses in the wave propagation. The abso 

lute values of the Fourier transform F(f) of the surface profile at each 

one of the three distances is shown in fig. 10. Another feature is the 

overshooting of experimental G(f) values at 5 m above the theoretical 

ones in the range 1.1-1.9 cps. This may possibly have one or both of the 

following explanations: (i) there is still turbulence in the surface at 

5 m from the paddle in this case; (ii) on the one hand the B & S formu 

la is not so well verified in practice,but on the other hand the energy 

loss along the flume is such that at 19 m and 29 m it brings down the 

G(f) values in a way which makes them approximate the theoretical curve. 

This needs further investigation. 

4.3.2 - Variation with impulse parameters 

Besides the experimental impulse of test no. 101,  other  experimental 

tests were made with impulses with different values of H and T. In ta 

ble 1, these tests are summarised. 
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This table shows that the impulses of tests 102, 103 and 10^ are propor 

tional to that of test 101 and so if the system |x(t), y(t)f is linear 

then the resulting surface profile should be the same, only with a diffe 

rent scale of elevation. That this was indeed approximately so is reflec 

ted in the fact that variations in the corresponding 6(f) values are but 

small, fig. 11. 

Table 1 - Experimental impulse inputs used 

Test no. H (cm) T (s ) 

101 3.16 0.536 

102 2.1*6 0.536 

103 2.05 0.536 

104 1.62 0.536 

105 3.51* 0.760 

106 3.98 1.0k 

107 'uoo 1.36 

108 3.91 1.76 

The result of using impulses with successively larger T, as in tests 101, 

105, 106, 107 and 108 is shown in fig. 12. The larger the T, the sooner 

the fall in the G(f) values. This is explained by the fact that wide im 

pulses are poorer in the higher frequencies. In fact it can be shown 

that the impulse input energy falls down to zero when f reaches the va 

lue ~p=p, This value is about k, 2.6, 2.0, 1-5, 1.1 cps, respectively, 

for the five tests, and it is seen that the last three are still within 

the frequency range of interest. On the other hand, while the zero value 

for the impulse of test no. 101, which had the smallest width possible, 

is not reached before k cps, the G(f) curve is still below the theoretjl 

cal curve for f >1.6 cps and so, lack of linearity seems to play a part 

in this fall; it would be interesting to see curves for narrower experi 

mental impulses if it were possible to obtain them, which it is not, 

owing to mechanical and hydraulic limitations. 
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4.3-3 - Variation with water depth 

As mentioned in the introduction, the water depth used for all the tests 

described was 0.50 m. However, tests with impulses similar to that of. 

test no. 101 have also been made for other depths. Fig. 13 shows G(f) 

computed by (4) for x = 29 m and for depths d = 0.20, 0.30, 0.40, 0.50 

and 0.80 m. The B&S curves for 0.20, 0.50 and 0.80 m are also indicated 

for comparison. 

Non-linearity is apparent at all depths especially at the shallower ones, 

where deviation of experimental G(f) values from B&S curves is evident 

at all frequencies. Thus for each surface spectrum to be used in tests, 

the corresponding input will probably have to be determined by success! 

ve approximations, possibly starting with the experimental G(f) obtained 

through the use of a narrow impulse input. 

In the higher depths there is however a reasonable agreement between ex 

perlmental G(f) points and the B&S curves in the lower frequencies, 

that is, the system may be considered for these frequencies as approxi 

matively linear. In fact, d'Angremond & Van Oorschot (1969) report good 

results using the B&S curves for a depth of 0.4-0 m. The spectra they 

used had only a small percentage of their energy out of the range where 

for that depth non-linearity is more strongly felt. It is interesting to 

note, however, that they also report somewhat lower values than expected 

in the output spectra for the higher frequencies, which is in accordance 

with the fall observed in all experimental G(f) values after 1.5, 1.6 cps. 

5. CONCLUSIONS 

A summary of the more important conclusions drawn in preceding sections 

is: 

- The linearised equations of Hydrodynamics from which the B&S 

curves were derived for sinusoidal movements imply that the system j x(t), 

y(t) } is linear and so those theoretical curves should apply even for 

non-sinusoidal movements whenever the linearised equations are a good 

model for water waves. In practice it was found that non-linearity of the 

system was present at all depths especially at the shallower depths and 

higher frequencies. However, in many cases where higher depths and lower 

frequencies, only, are of interest it is to be expected that the mentio_ 

ned non-linearity will not prevent the validity of the use of an appro- 

ximate gain function possibly coincident with the ascending branch of 

the B&S curves. 
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- In what concerns  variation along the flume a slight decrease in  the 

wave energy was detected as distance from the paddle increased. 

- Non-permanent paddle movements of the impulse type were found  to  be 

quite convenient for these gain function studies  both  for  use with 

Kennard's formula and for experimental tests. As expected narrower  im- 

pulses produce better results and so the narrowest impulses  compatible 

with mechanical and hydraulic limitations should be used. 
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