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Abstract 

A theory is derived to predict ocean wave reflection and transmission 
at a permeable breakwater of rectangular cross section. The theory solves 
for a damped wave component within the breakwater and matches boundary 
conditions at the windward and leeward breakwater faces to predict the 
reflected and transmitted wave components. An approximate solution to 
conventional rubble mound breakwater designs is formulated in terms of an 
equivalent rectangular breakwater with an additional consideration for 
wave breaking.  Experimental and theoretical results are compared and 
evaluated. 

Introduction 

It is common practice in coastal engineering design to account for 
wave transmission past rubble mound breakwaters by considering two 
possible transfer mechanisms:  1) diffraction through navigation openings 
in the structure, and 2) overtopping across the crest of the structure. 
Standard optical techniques have been modified to account for the 
diffraction process.  The overtopping process is less well defined, how- 
ever, recent semi-empirical methods (Cross, Sollitt, 1971) have improved 
design capabilities. 

Both procedures are based on the assumption that the structure itself 
is impervious.  However, field and laboratory observations raise some 
doubts about the universal applicability of this assumption. Calhoun 
(1971) has recorded transmission coefficients up to 40% resulting from the 
transmission of low crested swell directly through the pores of the rubble 
mound breakwater at Monterey Harbor, California.  Similar observations 
have been reported by the New England Division, Army Corps of Engineers 
for the Isle of Shoals breakwater off the Maine-New Hampshire coast. This 
behavior is aggravated by long wave excitation and may be an important 
consideration in harbor seiching. 

1827 
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Neglecting the effect of direct transmission can be a significant 
omission in breakwater and harbor design. The analysis described in this 
study provides a technique which may be used to evaluate this important 
characteristic of permeable breakwaters. 

Problem Statement 

Wave interaction with permeable breakwaters excites wave motion 
within the interstices of the structure as well as producing reflected and 
transmitted waves. As an incident wave encounters a breakwater face 
part of the wave is reflected back out to sea, some energy is lost to wave 
breaking and the remaining energy is transmitted to the breakwater 
interior. The wave inside the structure decays as it propagates through 
the pores. Upon reaching the leeward face, the wave is partially trans- 
mitted to the lee side of the breakwater and is partially reflected back 
to the interior of the structure. This process yields two wave trains 
propagating in opposite directions within the structure, a reflected 
wave train propagating back out to sea and a transmitted wave train 
propagating beyond the lee side of the breakwater.  In order to predict 
the characteristics of the wave which is ultimately transmitted beyond 
the breakwater, it is necessary to develop an analysis which properly 
identifies the reflected and interior wave motion as well. 

The analytical approach used in this study begins with the unsteady 
equations of motion for flow in the pores of a coarse granular medium. 
The equations are linearized using a technique which approximates the 
turbulent damping condition inside the medium. This yields a potential 
flow problem satisfied by an eigen series solution. Linear wave theory 
is applied outside the breakwater and the excitation is provided by a 
monochromatic incident wave. The solutions are matched at the sea- 
breakwater interfaces by requiring continuity of horizontal mass flux and 
pressure. The amplitude and phase of the unknown wave components are 
solved from the latter boundary condition. 

The Equations of Motion 

A complete derivation of the theory is presented in a separate report 
by the authors (Sollitt, Cross, 1972). The major features are outlined 
herein. 

The fluid motion in the interstices of the structure is described in 
terms of the seepage velocity and pressure. These are conceptual 
quantities which are averaged over finite and continuously destributed 
pore volumes. The incompressible equations of motion reduce to the 
following form: 

•~p   = V (p + YZ) + resistance forces 

CD 
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where q is the instanteous Eulerian velocity vector at any point, p is 
the corresponding pressure, y  is the fluid weight density, p is the fluid 
mass density, z is the vertical coordinate, t is time and y is the gradient 
operator. 

The gross effect of local spatial and temporal perturbations in the 
velocity field are accounted for by the resistance forces. The convective 
acceleration term is ignored because finite amplitude waves are quickly 
dissipated within coarse granular media. 

The resistance forces in Eq. (1) are evaluated by combining known 
steady and unsteady stress relationships. Ward (1964) has demonstrated 
that under steady flow conditions the pressure drop through large grain 
permeable media is specified by 

- i V (p + Yz)  = ~-  cq + -~  c2 q |q| (2) 

where v is the kinematic viscosity, K^ is the intrinsic permeability, 
Cf is a dimensionless turbulent resistance coefficient and e is the 
porosity of the medium.  The linear term governs low Reynolds number flow 
and the square law term dominates high Reynolds number flow. 

In the present application, it is hypothesized that unsteadiness may 
be accounted for by introducing an additional term which evaluates the 
added resistance caused by the virtual mass of discrete grains within the 
medium.  The resistance force due to the virtual mass is equal to the 
product of the displaced fluid mass, the virtual mass coefficient,, and the 
acceleration in the approach velocity. The resulting force is distributed 
over the fluid mass within the pore so that the force per unit mass of 
fluid is simply 

1 - £ r  •   3q 
~T~CM at 

where CM is the virtual mass coefficient of medium grains. C^ is a known 
quantity for isolated simple shapes, but generally is unknown for random, 
densely packed materials. 

Combining the steady state damping law proposed by Ward with the 
additional inertial damping law proposed by the authors yields the 
appropriate replacement for the resistance forces in Eq. (1). 

3q      1 ,    v        Lf   2   I |    1 - e „  3q 
Kp 

ST -  - J V (p + YZ) - j^- eq - -j—    e q |q| — ^ ^ 

(3) 
V • q 

The non dissipative inertial resistance term may be transposed to the left 
hand side of the equation and an inertial coefficient, S, defined as 

s= i + ^s, w 
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then the equation of motion becomes 

(5) 

Note that Eq. (5) reduces to Darcy's Law for low Reynolds number, steady 
flow. 

Linearzation Technique 

In order to find an analytical solution to Eq. (5) some linearizing 
is necessary. The specific technique employed is as follows. The 
dissipative stress term in Eq. (5) is replaced by an equivalent stress 
term linear in q, i.e., 

C e2 

P* + ~- q |q| * foq (6) 
KP     ^ 

where a  is the angular frequency of the periodic motion and f is a 
dimensionless friction or damping coefficient. The coefficient o is 
introduced to make f dimensionless and for subsequent algebraic expediency. 
To evaluate f in terms of the known damping law it is required that both 
the linear and non-linear friction laws account for the same amount of 
energy dissipation during one wave cycle. This is commonly referred to as 
Lorentz's condition of equivalent work. 

The resistance term in the equation of motion, expressed in either 
form of Eq. (6) represents a friction force per unit mass acting at a 
point in the flow field.  If this term is multiplied times the mass flux 
per unit volume flowing in a direction opposed to the friction force, 
the resulting quantity is the power dissipated per unit volume.  If the 
power dissipation per unit volume is integrated over the volume of the 
flow field, V, and the wave period, T, the resulting quantity is the 
total energy consumed by friction in the volume of interest during one 
wave period.  According to Lorentz's hypothesis, this quantity must be 
the same for all legitimate damping laws describing the same process. 
In equation form, this constraint is written 

f ft+T ( ft+T      C.2 
edV      faq-pq dt    = edV {^3. + _|£_    q|q|}   .   pq dt 

V      ' t ' V ' t P P 
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Thus a unique relationship exists between the medium parameters 
(E, Kp, Cf), the flow field parameters (v,q) and the friction coefficient, 
f. With f evaluated as a constant throughout V , this relationship may 
be written 

dV 

ft   +  T       2 

6       {    Kn 
1 Jv Jt                  P 
a !       f1 + T 

dV       eq2    dt 

Cf£ I I3 

T; |q| > ^ 
(7) 

The medium parameters in Eq. (7) are determined from steady state 
tests on small samples of the breakwater material. The velocity field is 
determined from the theoretical solution. Therefore, an iterative pro- 
cedure is to be anticipated in the solution to f and q. 

Substituting the linearized damping term into Eq. (5) yields the 
linearized equation of motion 

S ft = - - V (p + yz) - ftiq 

Potential Flow Field 

(8) 

The equation of motion is linear in both q and p. As a result, a 
simple harmonic excitation will yield a simple harmonic solution to the 
equation. The excitation in this study is assumed to be a monochromatic 
sea surface.  It is consistent with Eq. (8) to equate the frequency of 
oscillation within the medium to the frequency of the excitation, o, 
so that 

q(x,y,z,t), p(x,y,z,t) = {q(x,y,z), p(x,y,z)} e10 

and 

3  {q,p} = io {q,p} 
3t 

Substituting into Eq. (8) yields 

(icrS + fa) q = V(p + yz) 

Performing the curl operation on this equation demonstrates the 
irrotationality of the seepage velocity field, that is 

c(iS + f)Vxq = -ivxv(p + Yz) = 0 
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Thus, V x q = 0, the flow field is irrotational and a velocity potential, 
$, may be defined wherein 

V$ (9) 

Combining Eq. (9) with the incompressible continuity equation yields 
Laplace's equation 

V • q V • v$ 

which must be satisfied throughout the flow field. 

Substituting Eq. (9) into (8) and removing the gradient operator 
leads to 

S ii + I (p + Y2) + fa$  = o 
3t  p ^ 

(10) 

This is the linearized unsteady Bernoulli equation for flow in large scale 
granular media with quasi-linear damping. Along with Laplace's equation, 
it describes the flow and pressure field within the interstices of the 
granular media.  In order to completely specify the problem, it is 
necessary to resolve the boundary conditions. 

Boundary Value Problem 

A vertical section of the solution domain is specified by a horizontal 
bottom at depth z = -h and a free surface z = n, referenced to the still 
water level. 

Capillarity and surface tension are negligible phenomena due to the 
large scale of the pores in media of interest. Consequently, the fluid 
pressure at the free surface is atmospheric pressure. The dynamic free 
surface condition is obtained by evaluating the Bernoulli equation at the 
free surface with p = 0 at z = n, thus 

(S 
3$ 
3t 

fa*) (11) 

In order to avoid the where g = •*• , the acceleration due to gravity, 
difficulties of a transcedental solution and in keeping with the small 
amplitude wave assumption, the surface boundary condition is evaluated 
at z = 0. 

The rate at which the free surface rises and falls about the still 
water lever (SWL), dn/dt, is equal to the vertical velocity component in 
a pore at the free surface, 34/3z. This specifies the kinematic free 
surface condition as 

dn 
dt 

3_n_  3_n dx  _  3£ 
Dt + 3x dt      3z 

(12) 
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The convective term is of second order and may be ignored. Substituting 
Eq. (12) into (11) and applying the simple harmonic time dependence to 
the velocity potential yields the homogeneous free surface boundary 
condition 

-^ + a2 (if - S)<J = 0 (13) 
Jz = 0 32 

Breakwaters are commonly constructed on natural bottoms of very low 
permeability (sand, shale or bedrock).  It is consistent to regard such 
a foundation as being impervious.  It follows that the vertical velocity 
component must vanish at z = -h, i.e., 

|f I = 0 (14) 
'z =  -h 

Laplace's equation, along with the homogeneous boundary conditions 
expressed in Eqs. (13) and (14) specify the general form of the boundary 
value problem. 

2 
Throughout the domain:  V 4  =0 

At z = 0 :     g ||- + a2 (if - S)4> = 0 

At z = -h 3z 

General Solution 

This study seeks a two dimensional solution to the equations of 
motion.  The longitudinal coordinate is in the direction of incident wave 
propagation.  The homogeneous boundary value problem may be solved using 
a separation of variables technique.  In the absence of a superimposed 
current, the general solution is 

-iK x iK x ch K  (h +  z)     . 
*    =  i(a,   e      n + a.,  e    n  )  —,„ ?  ...       ,   "• ,  e1CTt (15) n ^ In 2n '   cr(S -  if)     ch K h *•    ' 

where 
2 

a   (S -  if)   = gKn th yi (16) 

and ch, th represent the hyperbolic cosine and tangent functions, 
respectively. 
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Equation (16) is a characteristic equation which, specifies an infinite 
number of acceptable values to the complex eigen value KJJ. For each eigen 
value, Kn, there is one eigen function, $n, with its own arbitrary constants, 
a-^n and a2n. Each eigen function is a solution to the boundary value prob- 
lem. The total solution is the sum of all eigen functions.  In theory, an 
infinite number of eigen functions exist, but in practice it is found that 
only a finite number of eigen functions need be summed to specify a problem 
to a reasonable degree of accuracy. Thus, the total solution is 

* = ? *n (17) 
n = 1 

Equation (16) is equivalent to the dispersion equation in linear wave 
theory. Separating Kn into real and imaginary parts 

K  = r (1 - ia ) (18) 
n    n      IT 

and substituting into Eq. (16) yields a pair of dispersion equations for 
the real quantities V    and a . n        n    n 

sin 2a r h 
1 +      

n n 1 • 

a    sin 2a r h n              n n 
sh 2r h n 

1 - 

2 
sin a T h n n 

„ 2                  sh 2r h .        a sh 2r h 
«2_ = r th r h  = S        |. = a n       . 2 „ , S   n    as in 2a rh 

  n      n n 
sh 2f h 

ch r h 
n 

Note that with no damping (f = 0) and no virtual mass effect (S = 1.0), the 
above reduce to the linear wave theory velocity potential and dispersion 
equations. 

Substitution of Eqs. (15), (16) and (18) into the dynamic free surface 
condition yields 

-a r x ifot - r x)      a r x ifat + r x) 
nn        n       nn   k    n ' n = a, e      e + a„ e     e 

n   In 2n 

Thus, the surface profile is composed of a series of exponentially damped 
sinusoids propagating in both the positive and negative x directions. The 
real part of the complex wave number, V  , specifies the spatial periodicity 
while the imaginary part, a , specifies the decay rate. 

Vertical Face Breakwaters 

The two dimensional velocity potential described by Eq. (15) applies 
to a media of finite depth and arbitrary longitudinal extent. To specify 
the potential for a breakwater of finite width, b, consider a crib style 
breakwater, located in a monochromatic sea environment, as sketched in 
Fig. 1. As an incident wave encounters the breakwater face at x = 0, a 
reflected wave is formed and a wave propagates through the structure to 
X = b where it is partially reflected, partially transmitted. 



PERMEABLE BREAKWATERS 1835 
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Q%0. C^ Oi 

-** n. 2b!Jooi 
S5IOO Q\ 

x=0 x=b 

Figure I. Crib Style Breakwater 

A series of eigen modes is generated in each of the four resulting 
wave trains.  Linear wave theory applies in regions I and III where f = 0 
and S = 1.0.  In these two regions, only the progressive modes propagate 
away from the breakwater. The local modes, characterized by imaginary 
wave numbers, are necessary to satisfy the interfacial boundary conditions 
but decay rapidly away from the breakwater. 

The general solutions in each of the three regions are known. To 
apply the general solutions to this particular problem, the phase of the 
unknown amplitudes must be referenced appropriately. The incident, 
reflected and positively directed interior waves are referenced to the 
x = 0 face.  The transmitted and negatively directed interior waves are 
referenced to the x = b face. A summary of the solutions, in terms of 
unknown amplitudes is given below. 

gion I 

JT = *. + X$ 
I   l    rn, 

n = 1 
., „    ch k, (h + z) 

i.   = i a.e-
lklxf 11 i elat 

I    i     k   sh k h 

ik x     ch k (h + z)       .   ^ 
n a_ n  _  icrt 

k    sh k h    e 

P 

jion II 

gz gk th k h & n    n 

5TT = t  $ 
II    n 
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-iK x IK (x - b)    ch K Ch + z) 
. ,     n n      a             n    '      lot 

* = i(a, e    + a_ e        —  . v u  e 
n     In 2n          K  sh K h 

n    n 

PII 2 
-=i = -CiS + £) 4> - gz     ,     cr (S - if) = gK th K h 
p        '  II s             l    J5nn 

Region III 

00 
$TTT  = S  *. Ill    tn 

n = 1 

-ik (x - b) 
*.  = ia. e         i— 
tn    tn          k 

n 

ch k (h + z) 
n iat 

e 
sh knh 

T~ = " xa in " gz 
2 

>     o    = gk th k h 6 n    n 

These equations contain 4n unknowns, i.e., n unknowns for each of the 
amplitude series a-^, ain, a2n and atn.  In order to evaluate these unknowns, 
4n additional boundary conditions are needed. Since the solutions in 
adjacent regions must be continuous at the interface between regions, it is 
apparent that the appropriate boundary conditions are continuity of 
pressure and horizontal mass flux at x = 0 and x = b.  In equation form, 
the boundary conditions may be summarized as: 

34T 3* 

PI = Pn °r        Sj     =   (S - if)*n 

x = 

eun= Um or 6 !!n 
: 

3x 
Pn - Pm      or        (S - if)< 

II        III 

Applying the above conditions directly yields a 4n x 4n complex matrix 
when evaluated at n different values of the depth, z.  Considerable 
simplification may be gained by utilizing the orthogonal properties of the 
eigen functions. Orthogonality is the characteristic that the integral of 
the product of two eigen functions vanishes over the limits of the vertical 
domain if the eigen values are not equal, that is 

0 
<t> $„ dz = 0, m 4  n _h m n 

It is the z dependent terms that are orthogonal. To utilize this property, 
the interfacial boundary conditions are multiplied through by ch K,„(h + z) 
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and integrated over the full depth.    The results,  after much algebraic 
manipulation, are given below: 

2 2 
K      - k. k K 

n=l    rn    ,, 2      ,2     v k,       S - if    t,  ' 
K      - k 1 1 

m n 

-iK b                        K 2 - k 2      k k K 
m      »      _ m 1     ,    n e    m  .   _     .   n e m 

6     ' ,     tn    ~~2      ~2   <• kT " S^if k.   >  ~    1,U " S-if    k, 
n=l K      - k 1 1 1 

m n 

2 2 
K z -  k,           k K 

v    r        m          1 ,    n E          m , 
E  .Lrn —2      ~2 <• E" ' s=if    k7 ' 
n=l        K      - k              1 1 

m          n 

-iK b K 2 - k 2      k K K 
m    »      „ m 1     ,    n  ,     e m, i   n J.    

E m 

e S=l Ctn   "I—TT C FT + s=il   K  } =    u+s^r 
K      - k 1 1 1 

m n 

„   .„ ,     k,   K sh K h ch K h 
r      - &-it-l      1    m m m ,,   . 

lm e „ 2      ,   2 sh K h ch K h +  K h    li-u 

K      - K, m m m 
m 1 

K                            K2-k2k K 
e        _m      °° _m ]^_  .    n        e m •.   •• 

S-if    k    " L .  Lrn    „ 2      ,2   4,       S-if    k.   J   ' 
1      n=l K      - k 1 1 

m n 

_   .„  ,     k,  K sh K h ch K h 
C      = °-i£-l      1    m m m  

2m e „  2       ,   2 sh  K h ch  K h +  K h    f 
K      - k. m m m 

m 1 

2 2 
K      -  k, k K 

_  y      r m 1       .    n e m .   -, 
n=l    Ltn    T~2      TT    l k~ "  S^If    k~ J   > 

K      -  k 1 1 
m n 

a    a    a.   a. 
.   „   P   „   „     rn   in   2n   tn where Crn, Cln, C2n, Ctn = — , j— , — , — 

i    i    i    i 

A brief inspection of the above equations reveals that the solution 
has been reduced to a 2n x 2n complex matrix for the dimensionless ampli- 
tudes of the reflected and transmitted waves and two linear vector equations 
for the dimensionless amplitudes inside the breakwater.  It is apparent 
from the terms appearing in these last four equations that the solution 
ultimately depends on: the structural properties of the breakwater width 
and depth, b and h; the media properties of porosity and damping, e and f; 
and the wave properties as described by the wave numbers inside and outside 
the breakwater, K and k . 

n    n 
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Long Wave Solution 

The complete solution is difficult.to interpret qualitatively because 
of the series form of the complex matrix. Some insights into the general 
solution behavior may be gained, however, by considering the relatively 
simple case of long wave excitation. This condition is attained when the 
wave length exceeds the water depth by a factor of twenty so that the 
hyperbolic and trigonometric functions are equivalent to the values of their 
respective arguments. Then the dispersion equations become 

2 
— = k h th k h =  (kh)2 

g     n    n 

2 
^ (S - if)  = Knh th yi s  (Kh)Z (19) 

Each equation reduces to a single positive root and the depth dependence 
drops from the equations of motion.  Only a single eigen value exists for 
the solution in each of the three regions prescribed in Fig. 1. Thus, the 
total solution reduces to one component in each of the four unknown wave 
trains. 

Substituting Kh = Th(l-ia) into Eq. (19) and separating real and 
imaginary parts yields 

v<-u<-           l  V2^    c   n   *.    /-,   ,.   -2, T\                        A  +  f2/S2  -  1 ,.-, T h      =    J—    S(l+/l + f/s     ), a    =     y^       (20) „2, 2 

Note that the effect of the damping coefficient, f, is to increase the long 
wave number inside the breakwater relative to its value outside.  This 
causes the wave length to shorten, a result which one might anticipate.  In 
general, friction inhibits wave propagation, therefore the celerity and 
wave length should be decreased, as indicated by Eq. (20). 

The breakwater depth and width are of the same order of magnitude so 
that small Kh implies small Kb. Utilizing the small argument identities for 
the hyperbolic and trigonometric functions and evaluating the general series 
solution for a single eigen value yields the following for the dimensionless 
long wave complex amplitudes: 

2 
c    _ S- if-e  c    _  1  
r      S-if+e

2 -  i2e  ^h *  "  i + i- £*-Cs_if+e
2) 

2E Ob <•*•   y£h 

(21) 

(I  + l^il)   (1  + i2S_ /s^if") ,        /S^IF 
vih 1 

C
l  = " i ob"    ;•• . „    2.  C2 

These equations represent an exact solution to the permeable break- 
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water problem for the specific case of an incident wave which, is very long 
with respect to water depth and breakwater width. The simple form of the 
equations allows one to easily interpret the effect of various independent 
parameters on the solution. Some pertinent limiting conditions are: As the 
medium takes on the properties of pure sea water, i.e., 100% porosity and 
no damping, transmission becomes complete and no reflection occurs (f •*  0; 
e •> 1 with S = 1 yields Ct -*•  1, Cr -»• 0). As the porosity approaches zero, 
the breakwater assumes the characteristic of a solid vertical wall and no 
transmission occurs while reflection becomes perfect (e •*• 0 yields Ct ->•  0, 
Cr •*  1). As the damping properties of the medium become severe (either 
inertial or dissipative) the transmission drops to zero and the reflection 
becomes perfect (f or S + » yields Ct -> 0, Cr -> 1). As the breakwater 
becomes very thin, the transmission becomes nearly complete while the ref- 
lection becomes negligible (b -> 0 yields Ct -»• 1, Cr -> 0). Finally, as the 
wave period becomes very long, such as a tidal oscillation, the transmission 
becomes complete and no reflection occurs (cr -*•  0 yields Ct ->•  1, Cr -> 0. 
These same trends have been observed in the solution to the general problem 
for shorter waves. 

Equation (21) verifies that increasing the friction coefficient, f, or 
the product of f with the wave frequency, cr, causes a relative decrease in 
the long wave transmission coefficient. This behavior also applies to the 
short wave solution.  It will be useful, therefore, to be able to predict 
the dependence of fa on the wave and breakwater characteristics.  Lorentz's 
condition of equivalent work, as given by Eq. (7) specifies this dependence. 
The friction coefficient characterizes the damping throughout the break- 
water so the volume integral in Eq. (7) may be replaced by a double integral 
on x and z with the submerged portion of the breakwater as limits of integ- 
ration. 

2 i      13 
0        b t + T        vqD       C.e      qn 

2 { —r- +       '      '      >  dt 

fa = 

dz dx 

0 

Kp       /K 
v P 

dz 

-h 

fb 

dx 

6 

t+T 

eqD
2 dt 

(22) 

where q is the real part of the complex velocity, q.  The numerator includes 
a term which is proportional to the cube of the velocity whereas the denom- 
inator is proportional to the square of the velocity.  Consequently, 
relative increases in the velocity will cause relative increases in fa.  The 
velocity inside the breakwater is proportional to the product of the wave 
amplitude and wave frequency.  The amplitude and frequency of the wave 
components inside the breakwater increase monotonically with increasing 
amplitude and frequency of the incident wave. Consequently, if the wave 
frequency is held constant then a relative increase in the incident amplitude 
will cause a relative increase in fa.  Likewise, if the amplitude is held 
constant, then a relative increase in the frequency, i.e., decrease in period 
and wave length, will cause an increase in fa. Since increasing fa causes 
a decrease in the transmission coefficient it may be concluded that the trans- 
mission coefficient will decrease for increasing wave steepness or increasing 
wave number. 
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Solution Method 

The solution method is a straight forward iterative technique. An 
outline of the procedure is given below. 

1) Assume an initial value for f, e.g., f = 1.0. 
2) Solve the dispersion equation, (16), for n eigen values, n = 5 yields 

better than 95% convergence for kh 5 ir. 
3) Solve the complex matrix for the amplitude and phase of n-modes in each 

unknown wave train. 
4) From 3) determine q and solve the Lorentz equation, (22), for f. 
5) Compare the calculated f with the assumed f and iterate if necessary 

(return to 2) ) . 
6) The absolute values of Cr and C-j- are the reflection and transmission 

coefficients for the structure. 

The iteration scheme typically closes after two to eight cycles and is 
efficiently performed on a digital computer. 

Conventional Breakwater Schemes 

The preceding discussion has been limited to permeable structures of 
rectangular form. The inclusion of layered, trapezoidal shaped breakwaters 
greatly complicates the problem. A rigorous analytical solution is virtually 
impossible due to the non-homogeneous boundary conditions and wave breaking 
which occurs at the inclined breakwater slopes.  To circumvent these 
difficulties this study introduces an approximate equivalent rectangular 
breakwater solution. 

The simplified approach replaces the actual structure with an equiv- 
alent rectangular breakwater which has the same submerged volume as that of 
the trapezoidal breakwater. That is, a hypothetical breakwater is formed 
by bisecting the slopes between z = 0 and z = -h with vertical planes, as 
in Fig. 2. Within the confine of these planes, the rectangular breakwater 
has the same internal structure as the trapezoidal breakwater, and the crib 
style breakwater solution of the previous section is used to describe the 
flow field.  Exterior to these planes, linear wave theory is applied to 
describe the incident, reflected and transmitted wave trains.  The two 
solutions are matched at the hypothetical interfaces to satisfy continuity 
of pressure and horizontal mass flux and thereby solve for the unknown modal 
amplitudes. 
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Figure 2.  Equivalent Rectangular Breakwater 
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Lorentz's condition of equivalent work is used to evaluate a linearized 
damping coefficient, f, which applies throughout the hypothetical rectang- 
ular breakwater.  However, unlike the condition derived for the crib style 
breakwater, the new equivalent work principle attempts to account for the 
effect of energy dissipation due to wave breaking on the windward slope. 
This is accomplished by modifying a theory attributed to Miche (1951) which 
estimates the wave energy losses on impermeable slopes.  These losses are 
added to the frictional losses in the numerator of Eq. (22) to yield a 
revised estimate to the damping coefficient, f.  Thus, 

0    b    t+T 

dz   dx 
v%     Cf£   hJ3        TE, 2    , "HR    ~f- \      ,      1Eloss { T-  + 7T ' ' } dt + "IT211 

hot       p      P ,,,.. 
fa =  r -r —s    C25) 0   i-b 

dz 
-h 

dx 
0 

ft+T 
2 

eqR dt 
t 

where E20SS is the period averaged power lost to breaking.  In this manner 
surface breaking losses are combined with internal friction losses.  The 
effect is distributed among the various modal components in the reflected 
and transmitted wave trains through the dependence of the interfacial 
boundary conditions on f. 

The details required to evaluate Bioss are presented in the reference 
by Sollitt and Cross (1972). The calculation is empirical but facilitates 
enumeration of breaking losses in the absence of precise analytical methods. 
As improved methods become available, they may be incorporated into the 
calculation.  The intent of the present discussion is to identify the con- 
cept and relegate the mechanical details to the parent reference. 

Summarizing, the conventional sloping face breakwater problem is solved 
by adding breaking losses to the crib style breakwater solution.  This 
effectively increases the friction coefficient f and reduces the transmission 
coefficient accordingly. 

Experimental Results 

Experimental results for two model breakwater configurations are pres- 
ented. The first model is a homogenous, vertical walled breakwater composed 
of 3/4" gravel contained in a wire screen crib.  The model is twelve inches 
wide and extends well above the height of maximum clapotis.  The water 
depth is twelve inches. 

The second model is a layered trapezoidal shaped structure dimensioned 
as in Fig. 3.  The media properties are also tabulated in the figure.  The 
properties of the second layer correspond to those of the crib style break- 
water as well. 

A complete documentation of the experimental program is presented in the 
reference by Sollitt and Cross (1972).  Sample results are presented in the 
following figures. The crib style breakwater behavior is displayed in Figs. 
4 and 5.  The trapezoidal layered breakwater behavior is displayed in Figs. 
6 and 7. The reflection and transmission coefficients are presented as 
functions of wave steepness and wave number.  A dominant feature is the 
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decrease in the transmission coefficient with increasing wave steepness. 
This characteristic is due to non-linear damping as predicted by the theory. 
The reflection coefficient is relatively insensitive to wave steepness for 
the crib style breakwater case but decreases due to wave breaking on the 
sloping face breakwater. The reflection and transmission coefficients 
decrease with increasing wave number (decreasing wave length) for both 
configurations. 

Comparison of Theory and Experiment 

The theory is evaluated using the given breakwater properties and five 
terms in the eigen series solution. The virtual mass coefficient, Cy, is 
unknown and is taken equal to zero by default. Theoretical reflection and 
transmission coefficients are solved using the iteration procedure discussed 
previously.  The results are presented as continuous and dashed lines on 
the experimental plots. 

Figures 4 and 5 reveal that the theory tends to underestimate the 
reflection coefficient and slightly overestimate the transmission coefficient 
for the crib style breakwater. The correlation is improved by taking non- 
zero values for the virtual mass coefficient. One cannot predict the 
magnitude of this coefficient apriori because the virtual mass of densely 
packed fractured stone is not known. Evaluation of C[^, however, may serve 
as a calibrating link between theory and experiment in future studies. 

Theory and experiment also tend to diverge for very small values of the 
incident wave amplitude in both models.  This response is apparent at small 
H-/L on the constant kh curves, and at large kh on the constant H-j/L curves. 
It can be shown that this occurs when the scale of the fluid motion 
becomes smaller than the aggregate scale on the breakwater surface.  As the 
wave amplitude becomes very small, the wave field orbit diameters are 
exceeded by the individual rock diameters on the slope.  Then the waves 
begin interacting with individual pieces of gravel rather than a continuous 
porous slope.  The reflection process is modified as waves are partially 
reflected directly off particle surfaces and the theoretical assumption of 
a continuum no longer applies. 

Correlation between the conventional trapezoidal shaped breakwater 
theory and experiment is quite favorable. The results, however, are contin- 
gent upon proper evaluation of the breaking losses, and further insights 
into the breaking process are needed. 

Conclusions 

Theory and experiment for both breakwater configurations generally con- 
cur that:  1) the transmission coefficient decreases with decreasing wave 
length, breakwater porosity and permeability, and increasing wave height and 
breakwater width.  2) The reflection coefficient decreases with decreasing 
breakwater width and wave length and increasing porosity and permeability. 

Correlation between experiment and theory is best when the incident wave 
height exceeds the particle diameter of the medium. Although additional 
work is needed to improve the breaking wave calculation, the predicted 
reflection and transmission coefficients are very useful design estimates. 
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