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RESULTS OF OCEAN WAVE-CONTINENTAL SHELF INTERACTIONI
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Abstract

Extensive wave refraction computations and analyses have been made
utilizing eleven depth grids on the inner continental shelf along the
east coast of the United States. The most important process determining
shelf and shoreline wave energy distribution is the interaction of the
ocean surface waves with the numerous shelf relief elements. This ocean
wave-continental shelf interaction results in a non-uniform wave energy
distribution that varies widely with different wave input conditions
such as wave approach direction, wave length, and tide level. Techniques
are being developed to manipulate and analyze these extensive wave data
(encompassing over 500 wave refraction diagrams and associated computa-
tions), in order to increase understanding of the complex wave behavior
resulting from the ocean wave-continental shelf interaction.

INTRODUCTION

Along the east coast of the United States where the wide, shallow
and high relief continental shelf (5) interacts with ocean waves as far
as 60 nautical miles from shore, the shoreline wave energy distribu-
tion becomes highly irregular and complex. Eleven regional and local-
ized wave refraction computational studies have been made on this shelf
and along the shoreline encompassing depth grids with a total of a
quarter-miTlion depths and 50,000 wave orthogonals (Figure 1 and Table 1).
Along each of these orthogonals 17 different wave parameters were calcu-
lated and the values printed out at intervals of approximately 0.5 to
1.0 miles as the waves progress landward from deep water. Computational
procedures for these studies have been previously described (3).

Examples of four of the 124 wave refraction diagrams computed for
the First Order Virginian Sea Wave Climate Model (7) are presented in
Figures 2 through 5, which typify the results obtained for widely varied
deep water wave conditions. Attention is focussed upon the variation
between low and high tide conditions (Figures 2 and 3) of wave ray
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convergences and divergences (i.e. wave energy concentration and diminu-
tion, respectively) along the shoreline, especially at the major resort
city of Virginia Beach (Tocated approximately at x = 120). Also of con-
siderable significance are the variations that occur with different wave
approach directions (AZ) and wave periods (T) as shown in Figures 3
through 5.

In order to gain a greater understanding of this complex wave behav-
ior, shoreline histograms were constructed of wave energy, wave height
(Figure 6), power gradient and shelf contour maps of wave energy, wave
height (Figure 7), and maximum values of wave-induced bottom velocities.

Finally, the shoreline wave ray histograms are being subjected to
spectral analysis (Figure 8) in an attempt to determine whether the
apparent periodicity of wave energy concentrations has a firm statistical
basis.

RESULTS AND DISCUSSION

Effects of Shelf Geomorphology

The regional studies of the shelf wave refraction and shoaling effects
from Saco Bay, Maine to Cape Hatteras, North Carolina (3,4) indicate a
spatial periodicity in shoreline wave energy distribution. This shore-~
Jine periodicity results from the interaction of the ocean waves with the
numerous relief elements of the continental shelf. These shelf relief
elements include the shelf-edge canyons (for 12-second or longer waves)
such as Baltimore, Washington and Norfolk Canyons; shelf valleys such as
the shelf extension of Hudson, Delaware and Chesapeake Bays; ridge and
swale bathymetry, most notably adjacent to southeastern Cape Cod, south
shore of Long Island, Barnegat Bay, New Jersey, Delmarva Peninsula and
Virginia Beach, Virginia; and shore-connected northeast-oriented ridge
systems such as Monomoy Island, Cape Cod; Bethany Beach, Delaware; False
Cape, Virginia; and Rodanthe, Cape Hatteras.

Shoreline Wave Energy Distribution

The resultant shoreline wave energy distribution varies with wave
approach direction, wave period, stage of the tide and changes in sea
level from the inverse barometric effect associated with moderate to
severe storms. This spatial variation in shoreline wave energy distri-
bution (i.e. alternate zones of wave energy concentration and diminution)
also varies directly with the wave length of the incoming waves. For
waves of 6-8 seconds these periodic zones are most prominent at spacings
of 1-5 miles in length along the shoreline (Figures 2 through 4) while
for waves of 12-14 seconds these zones may be 10-25 miles in length
(Figure 5). The variations in the widths of these zones appear related
to the distance from shore that the waves begin to interact with the
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shelf relief elements. This spatial wave energy distribution along the
shoreline will affect the morphology and the Tong-term erosional history
of the shoreline (6). Clearly, these trends should be considered in any
shoreline planning or management endeavor.

Continental Shelf Wave Energy Distribution

In addition to the shoreline effects, this ocean wave-shelf inter-
action results in offshore areas of "confused seas" which should be
identified and noted in the planning for offshore port siting proposed
for this region. Note the strong "straight caustic" along the seaward
rim of the Delaware canyon (top of Figure 5). Though most apparent for
AZ = 157.5° and T = 12 sec, because of the canyon orientation and the
abrupt change in depth, such an area of presumed surface disturbance
will also occur under other conditions in which the waves travel into
abruptly deeper water (2). Two of the computed wave parameters, the
maximum horizontal components of the wave-induced bottom velocity and
acceleration, can also be applied to shelf sediment transport studies.
These two parameters are needed in wave force calculations for proposed
offshore structures. The effects of these wave parameters will also
vary with different wave approach conditions. As a result of these
refraction computations, a library of wave information is available for
analyses of regional studies of ocean wave-continental shelf interaction,
resulting shoreline and shelf effects, and for delineation of areas
favorable to the placement of coastal structures.

Historical Shoreline Changes

Wave refraction computations were made offshore from Wachapreague,
Virginia (Figure 1) using both 1852 and 1934 bathymetry (6). Comparison
of the bathymetric surveys of 1852 and 1934 indicates that, during this
82-year time interval, these barrier islands have become substantially
offset (up to 1 km) seaward on the downdrift side of the inlets. The
inlets have migrated southward while the ebb-tidal deltas remained sta-
tionary. The offshore bathymetry has undergone concomitant changes
within the same 82-year interval, most notably in the ridge and swale
bathymetry, which has deepened in the troughs and built upward on the
crests.

Using standard computational wave refraction techniques (3) and
the older bathymetry it was determined that in 1852 the shorter wave-
length northeast waves (T = 4-6 secs) tended to concentrate wave energy
at the south ends of these islands, whereas Tonger northeast waves (T =
12 secs) tended to concentrate wave energy at the north ends of the
jslands (Figure 9). Moreover, the longer waves approached the shore
with their wave orthogonals more perpendicularly to the shoreline than
the shorter waves. Thus the more accretional waves built up the shore-
Tine on the downdrift sides of the inlets; while the shorter erosional
waves eroded the shoreline on the updrift sides. This effect was
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amplified by a feed-back mechanism--the more the inlet offset the greater
the refraction of the Tonger waves, which resulted in more buildup and a
decrease in Tittoral drift, especially to the north. However, a tendency
since 1852 for the shoreline wave energy distribution to become more uni-
form along any one of these barrier islands suggests that when the wave
energy distribution reaches equilibrium the growth of the inlet offsets
will cease, and the inlets will become more stable.

Spectral Analysis of Shoreline Energy Distributions

The spatial periodicity of wave energy concentrations suggested by
histograms such as Figure 6 prompts further inquiry. Using standard
spectral analysis procedures (1), the initial results of such inquiry
are typified by Figure 8. Some support is provided for an assumption
of spatial periodicity with spectral peaks being indicated for shore-
Tine intervals of 5.3 and 12.0 nautical miles for the wave conditions
AZ = 45° and T = 14 sec. However, Timitations of the "data" preclude
the formation of any firm conclusions at this point.

CONCLUSIONS

The intimate relationship of inner continental shelf relief and
shoreline wave conditions has been demonstrated by wave refraction
computations for several Tocations on the U.S. east coast. The results
serve as a guide to interpretation of coastal processes for engineering
purposes as well as scientific inquiry.
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Figure 1. Wave refraction computation grids on the northeast
and middle Atlantic continental shelf of the United
States.
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