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ABSTRACT

A solution of water particle velocities in the boundary layer developed by
monochromatic waves on the surface of a circular cylinder is obtained by apply-
ing the boundary layer approximations and perturbation method to the Navier-Stokes
and continuity equations represented in the cylindrical coordinates. Since, in
this process, it is necessary to give the velocity outside the boundary layer,
the water particle velocities of diffracted waves around the cylinder are derived
from MacCamy-Fuchs’ velocity potential. Moreover, the occurrence of laminar flow
separation is explained by using this solution.

On the other hand, using a hydrogen bubble tracer some experiments have been
performed about the water particle velocities of diffracted waves, velocity pro-
files in the boundary layer and occurrence of wake vortices. These results are
compared with theoretical ones.

INTRODUCTION

In estimation of the wave force on a circular cylinder, the Morison equation
expressed as the sum of the inertia and drag forces is generally used. However,
concerning the mechanism how the drag force is induced by wave motions, few
papers have been reported yet, and therefore, it is right to say that the rela-
tionship between the drag coefficients under wave motion and in steady state flow
is not clear yet.

On the other hand, in the diffraction theory presented by MacCamy and Fuchs?

to estimate the wave force on a large~diameter pile, since the drag force due to
flow separation and subsequent vortex formation can not be contained because of
neglecting the viscosity of the fluid, an applicable range of their theory is
limited.

Therefore, in order to estimate the wave force more correctly, it is neces-
sary to make progress in the study based on an idea of making clear the interac-
tion between waves and the pile, that is, investigating the effect of the pile
on the waves, and next, making clear the internal mechanism of the affected waves,
and finally, evaluating the force on the pile in such velocity and pressure fields.
From this viewpoint, the present study deals with the laminar boundary layer on
the surface of a circular cylinder developed by monochromatic waves.
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The concept of boundary layer was introduced by Prandtl in 1904, and studies
of the laminar flow around a circular cylinder in steady state have been made by
Blasius, Karman, Hiementz, Porlhausen, Howarth and many other investigators.

As a result, a lot of important facts were found about separation point, pressure
distribution, characteristics of the drag coefficient and so on? Y, yith re-
spect to the laminar boundary layer on an oscillating circular cylinder in still
water, Schlichting solved the boundary layer equation using successive approxima-
tions, and explained the existence of mass transport velocity outside the boundary
layer?.

On the other hand, Keulegan and Carpenter investigated experimentally the
relationship between the flow pattern around a horizontal cylinder installed under
the nodal area of standing waves and the wave force acting on the cylinder, and
found that the case when Keulegan-Carpenter’s number is equal to 15 is a critical
condition yielding the lowest value of the inertia coefficient and the largest
value of the drag coefficient®. The authors also investigated variations of the
drag and inertia coefficients with Keulegan-Carpenter’s number for progressive
waves . However, these are not mentioned in this paper.

THEORY
The coordinate system is shown in Fig.1,
in which (8,%,2) and (X,4,z) denote the cylindrical Y -
coordinates and boundary layer coordinates respectively.

(1) Water Particle Velocity around Circular Cylinder -

The water particle velocity in the boundary layer wave
must connect with the potential velocity outside the ] L/_“:;;
boundary layer that is the water particle velocity of << :%1
diffracted waves. !

14/T=075,05,025,00
Let U, V and W be the water particle velocities of
diffracted waves in the direction of the coordinates 6,

7 and z respectively. These are determined by MacCamy- Fig.1 Coordinate

Fuchs’ velocity potential ¢ as follows: system.
J. (kR) :
13¢_nH cosh kh({l+z/h) « n . Lot .
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in which H:wave height, T:wave period, h:water depth, k:wave number, o:angular
frequency, Riradius of cylinder, #:time, Jn, HZ and J4, HR” denote Bessel function
of order n, Hankel function of second kind of order n and their derivatives
respectively, and Ep=1 when n=0 and En=2¢0)" when nz1.
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(2) Three Dimensional Laminar Boundary Layer Theory on Circular Cylinder

Using the relations 6=Xx/R and 4=R+y, the Navier-Stokes and continuity equa-
tions expressed by the cylindrical coordinates 6, % and z are represented in the
boundary layer coordinates X, ¢ and z as follows:

gt lute, 1w /R) /[Ty /R)+ou, o == (1/p)p / (1+y/R)

oL RUY/R) i -u/REv2v, /R 1y /R) o)

Wt*uwx/(l’fy/R)*vame: —g—(Up)pZ ........... )

s

*v{wyywy/R( T+y/R) +wm/ (1+y/R) 2+w2z}

w,/(1+y/R)+u/R I+g/R)+uy+wZ=0

]

in which u, v and w denote the water particle velocities in the direction of
coordinates X, Y and z respectively, and p:density, p:pressure, g:accerelation
of gravity, v:kinematic viscosity.

Taking Upy=wH/T as a representative velocity and the wave length L=27/k as a
representative length, the quantities containing in Eq. (4) are replaced in the
following dimensionless forms:

x"=kx, y~=vReky, z7=hz, t=0t, Re=c/[kv),
w=u/l,, v’=/172—u/UM, w=w/U,, p’= ()O+ogZJ/(chM),
in which G:celerity and Re is a convenient Reynolds number to magnify the coordi-

nate ¢ in the boundary layer. Hereafter, however, for the sake of convenience,
dimensionless quantities are denoted without prime.

Rearranging Eq.(4) by substituting Eq.(5), the following dimensionless
equations are obtained with respect to_dimensionless velocities and pressure,
containing the parameters Uy/c, 1/kRVRe and 1/Re:

ut (UM/c) { (uuxmv/kR/ﬁEJ /{1+y/kRVRe) +uuy+wuz}
=—px/(7+y/kRV§E)+uyy+(w/{kR/§Z(7+g/kRﬂ@5J}

+{uxx/Re—u/(hR/ﬁEJ2+2v/RekR/ﬁz)}/(7+y/kR/ﬁE)2+ng/Re

(67
wt’f(UM/Q){uwx/(lfry/lzR/l_ZE..)wwymwz} f

=-)OZ+Wyy+Wy/{kR/ﬁ( T+y/kR/RE) }rw [/ {Re(1+y/kRVRe)? b, [Re

(ux’rv/&R@)/(I+g/!zR/lTe)+vy+wz=0 s )
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in which Um/c=nH/L is of the order of the wave steepness in magnitude, and is
generally supposed to be a very small quantity. Therefore, denoting it by &, as

er=lp/e=mH/L << 1,  aeeeaeaaas P (6)

the dimensionless velocities w, V and W are expanded into power series of g7 as
follows:

Urugre UrterBipt et e, VEVgre VIFe Bugtet e, wRgreWite MWt s e L e (D)

Also, 1/kRRVRe=V/vT/2n/R is of the order of the ratio of the boundary layer thick-
ness to the radius of cylinder in magnitude, which may generally be very small.
Therefore, denoting it by e, as

£0=1/RRVRe=NT/2m/R << 1, weevrsansnenons e c.(8)
the following approximate series can be introduced:
l/(l+y/kR/§€)=l/(1+52y)=l—ezg+€22g2"“ L e N 9

In this paper, it is supposed that the order of ¢; in magnitude is the same as g,
or smaller than £;. Moreover, the conditlon is limited within the range of
RR=2mR/L 21, and accordingly the order of 1/Re¢ is smaller than that of the square
of €, since the relation 1/Re=[kR)%e;%%e,2 is established.

Then, it is supposed that the velocities outside the boundary layer are
represented in terms of the water particle velocities of diffracted waves on the
surface of the cylinder obtained by substituting #=R into Egs.(l) and (3).
Designating them by Ur and Wr after dividing by Um, these can be written in the
following dimensionless forms:

. -E .
_coshlbhrz) 26 cw Mmoo omxgit
U =sinh kR 7 (kRI? nko T R) sin g Je ; (10)
n
_§iﬂﬂiﬁh1§L_3¢;__[_g.fifﬁL_ s BX Tt A
R sinh Rh @ ®RR ‘nZa R :
HTkR)

The dimensionless pressure gradients are approximately expressed by using Egs. (10)
and (11)

“pyUr,ter Uplip #URlp, ), -p_=Wp +ey (Ugllp #liglip ) . weveeenes (12)

By rearranging Eq.(47) with respect to the powers of €y after substituting
Egs. (5) to (11) into Eq.(47), the first approximate equations concerning g}o
(order of the zeroth power of €)) are obtained as follows:
=uRt R Wot‘Wo

uot‘uoy =th , u0m+voy+wog=0 . PR 13)

4 iy
The boundary conditions are given as

y=0: ugp=vy=we=0 , y=oi ug=Ug, wy=lg . TSN (14)
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The solutions of Eq.(13) satisfying Eq. (14), that is, the first approximate
solutions can be obtained in the similar manner to that by Schlichting3),
as follows:

e oL _ oy AL it
Upseto=eglo® s Wy WomngWoe T, vy =vosmtgllg Mg JeT,  ee - (15)
in which
;5=7—e'(l+“U/‘/5 ) CO:U_;/;__L_”_E-(zu)y//E} ,
,,,,,,, . (16)
U0=UR/eLi B W0=WR/8&I .

Although Uy and Wy are real functions in the case of oscillating flow, they are
complex functions in the case of wave motion as recognized from Egs.(10) and (11).
Therefore, the actual water particle velocities are given by the real parts in
Eq. (15).

The second approximate equations concerning 511 (order of the first power of
€1) are obtained as

gty © (Urliz #WRlin, ) - (oo #Vouo, #woug, )+ (e2/ €1 Juo,, ]
wlt—wlyy=(uRwa+waRg)-(ugwoxwouoywowozh(ez/el)woy , T e (D)
ulx"ulym’lZ:(EZ/el) {yug,-vol, J

and the boundary conditions are given by

y=0: uy=vy=wy=0 , yY=et u1y=0’ W1y=0 . B R RRERRRRNET-)
Among the solutions of Eq.(17) satisfying Eq.(18), uy is described as follows:

(ot
u1=(€2/61)§iuoeLG
. 240t 246X
+Cza(u0u0x+w°woz)e +

#27, Ulglo #Uollo )+ (Wolig, #elig )}

gid(uowoz-wouog)e

+§ic{(UOUOx‘U0U0x)+(UOWOZ-Uosz)}

*Eie{(U0W02+Uowoz)-(WOUUZ+W0woz)} , e e (19)
in which
o _ 1 . - (1+d)n”
El =750 e »
Y -~ e R .
oo Ay V2(A+) N7 A - (1407 1-4 L = (1+{)n
Ela_ 29 +28 + 3 n’e ,

o2 -/204007 3~ (1407 1=d L~ (144)n” 4 -2 (1+4)n”
2 e +§—e +—5*n e +Ze s % .0 (20)
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ST LI (%c05n’+2s1'nn’)~r2l e " (cosn-sinn”) , e (20)
223 1m2nT cosn’—%sinn‘)%‘ e (cosn +sinn”) ,

1. -n"1 pieino N .m0 PP
[ £t +sinm”)-Le cosn’~sin
g; =5re [5cosn n”) > [cosn n),

and n’=y//§, and A and wvindicate real and imaginary parts respectively.

The form of Eq.(19) was identically determined under consideration that the right-
hand side of Eq.(17) contains the products of complex number, and unknown functions
contained in Eq.(19), shown by Eq.(20), were obtained as the sum of homogeneous
solution and paticular one, in the same manner as for the first approximate solu-
tions. The second approximate solution of ¢ is indicated by using Egs.(15) and
(19) as

Uong=totety « e s e (21)

It is recognized that the second approximate solution contains the second harmonic
component and the mass transport velocity in addition to the fundamental component.
The actual velocity is given by the real part in Eq.(21). &§, Ljs and tj} are the
same as those obtained by Schlichting3), and however, rj, Lo Lig and L7, appear
as new functions in this study because the boundary layer is treated as three
dimensional, the curvature of the circular cylinder is taken into account and the
velocities outside the boundary layer are given by the water particle velocities
of not oscillating flow but waves.

COMPUTATIONS AND DISCUSSIONS

Fig.2 shows the ratio of the water particle velocity of diffracted waves U
calculated by Eq.(l) to the maximim value of the water particle velocity of pro-
gressive waves under the condition 6=90° and £/T=0.25. 1t is found from this
figure that the water particle velocity of diffracted waves on the surface of
cylinder (#/R=1) is twice as large as the velocity of progressive waves under the
condition that the radius of cylinder is small compared with the wave length
(kR<0.5), and this result corresponds to the theoretical fact that the potential
velocity on the surface of cylinder at 6=90° is twice as large as the current
velocity in steady flow3). The velocity decreases rapidly far from the cylinder,
and agrees roughly with that of progressive waves under the condition #n/Rg5.

I I R

20 ——
8 =90° kR
__lem=0.25 | gop
— o
0.5
————— 1.0

Fig.2 Computed water
particle velocities of
diffracted waves around
circular cylinder.

U/{(mH/T) «coshk{(h+z) /sinhkh}
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Fig.4 shows the variation of the velocity profile with change of e, only
which is equivarent to change of v. It is found from this figure that as €j)
increases, the boundary layer thickness increases.

Fig.5 shows the variation of the velocity profile with change of the radius
of cylinder R only which results in changes of both kR and e,. It is found from
this figure that in the case when the radius of cylinder is as small compared
with the wave length as kR=0.01, the separation occurs already at 6=110°. 1In
this case, Keulegan-Carpenter’s number") (denoted by K.C. hereafter) is

_Unax-T ey cosh kh(i+z/h)_
KCr—5R kR~ sinh kb 140

As mentioned later, even when K.C. is smaller than 14.5, the vortex formation is
seen, and therefore, it is reasonable that the separation occurs in this example.

015 1 T
o = 90° 'I
kR = 0.05 |
kh = 0.225 |
2/h=-0.167 ;

010 t/T= 0.25 l

j
I

/R

005
Fig.h vartation of u, ;5 with e;.

|
% Wk T

kh=0.b5 2/h=-0.167 t/T=0.25 £,=0.02

010 T T
6=90°
X/R
Q05 1 r
Fig.5 Variation of Uzpg

with kR and e5.







U/ (nH/T)

[N

LAMINAR BOUNDARY LAYER

L
°
5 oy
OOOC’}\-
of o,
h= 45cm, T=2.0sec
=-10cm, H=S5.6cm |
[ 8= 90° , t/T=0.22
\
I
1 /R 2 3
(c) 6=90°

U/(rmd/T)

V/(mH/T)

U/ (mH/T)

V/(nH/T)

15 T
S
o
1 ° : -
)
i oo o
R e
0S5th= 45em, T=2.0sec22e— _ 2 |e -
z=—10cm, H=5.3cm £ %oy \
6= 30° , t/T=0.25 E °
1 /R 2 3 5 o0y
°doa,
1 L
| |
=05 — I h= 45cm, T=2.lsec
0o o i - z=-10cm, H=5.lem |
R o= 60° , £/T=0.22
o I : J .
i 0 | L L
s | 1 R 2 3
—1 o :
= P |
- o ~ [ 1
(a) 6-30 e R S B
~ o
> 1%%0cv009,¢40500
; i
» L
(b) 6=60°
3
2 — 15
o \ o
90, o o
R R e E I P N
=g 0o
g h= 45¢cm, T=2.0sec
[ ANPU SN SR S— = 051 > E—
r = z=~10cm, H=5.6cm
h= 45¢m, T=2.0sec H=150° t/T=0.25
- z=-10cm, H=5.lcm - 0 S I 1
8=120° , t/T=0.25 1 vRo2 3
I N *
o} °
1 /R 2 3 o L7%00e
1 v Wl
£
<
05— T 05—
5 o
Go °”
0 o}
(d) o=120° (e) 6=150°

1857

Fig.7 Comparison of water particle velocities of diffracted waves
around circular cylinder between theory and experiment.
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In order to measure the velocity profile in the boundary layer, a semi-
circular cylinder with a radius of 10cm was attached to the side wall of the wave
tank which is 27m long, 50cm wide and 70cm deep as shown in Fig.8, and photographs
of hydrogen bubble lines generated from the platinum wire with a diameter of 0.05
mm were taken through the glass bottom.

2212§ator Eixge ggigg
® 9 \ |
Glass
.4\.,.uyuu
SePicular

A Wire| | ~"Cylinder

Fig.8 Sketch of experimental apparatus
(in case of boundary layer).

The experimental conditions are as follows:
h=45cm, z=-15cm, 6=90° and 110°, T:1 to 10sec, H:1 to 4cm, v=1.204%X10"2cm?/sec.

Some examples of the photographs in the boundary layer are shown in Photo.3,
and some results of this experiment are shown in Fig.9. In these figures, theo-
retical velocity profiles of the first and second approximations are also shown
by dotted and solid lines respectively. Within the range of the experiment, flow
separation were not recognized both in the experiment and the theory. It is found
from the figures that measured values are generally smaller than theoretical ones.
One of the reasons may be that water particle velocities of diffracted waves in
the experiment have a tendency to become smaller than in the potential theory as
mentioned above, and in addition, in the boundary layer theory presented in this
study, the water particle velocity outside the boundary layer with a finite thick-
ness is given by the value on the surface of cylinder calculated from Eq. (1),
which means that the boundary layer thickness is neglected.

On the other hand, it is recognized from Photo.3-(b) or Fig.9-(b) that the
phase angle of water particle velocities in the boundary layer precedes more than
outside the boundary layer.
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Fig.9 Velocity profiles in laminar boundary layer
around circular cylinder due to waves.
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CONCLUSION

In this paper, first of all, the water particle velocities of diffracted
waves around a circular cylinder have been discussed, and next, the velocity
profiles in the boundary layer on the surface of cylinder have been derived
theoretically and compared with the experimental results, and finally, the
occurrence of flow separation have been discussed.

Summarizing the results of this study, the following statements are made:

1. Theoretical values of the water particle velocity around a circular cylinder
are generally smaller than experimental ones, but both are resemble in velocity
profile in front of the cylinder.

2, The second approximate solution of the water particle velocity in the
boundary layer explains various characteristics of the boundary layer, that is,
boundary layer thickness, precedence of phase angle of water particle velocity
in the boundary layer, existence of mass transport velocity in the neighborhood
of outside of the boundary layer, and occurrence of flow separation.

3. In order to discuss quantitatively the validity of the second approximate
solution, it is necessary to obtain more accurate data, over a wide range, of
water particle velocities both in the boundary layer and of diffracted waves.

4, Considering the relationship between flow patterns and wave forces, it is
also important to investigate the criterion for flow separation, subsequent vortex
formation and vortex shedding under various conditions, and to measure the pressure
distribution on the surface of cylinder especially when the wake vortex is formed.
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