
CHAPTER 191 

ALGORITHM FOR VERTICAL DIFFUSION 

S0ren Peter Kjeldsen 

ABSTRACT 

A.mathematical method and a computer algorithm is 
developed for the case of one-dimensional vertical mixing 
for an estuary with rather small advection. In the case 
under consideration varies the diffusion coefficients both 
with time and depth, and the case is therefore closer to 
actual estuaries than earlier computing methods that 
applies   constant coefficients. Model experiments with a 
small grid oscilliationg with high frequecies in two fluids 
with different densities were performed to test the algorithm. 
Reynolds number for turbulence was  near 1.6-101'. 

The results showed that the ratio between the stabil- 
izing Brunt-Vaisala frequency and the agitating cyclic fre- 
quency was a governing parameter for the system, and dimen- 
sionless.diffusion coefficients could be expressed as a 
function of this parameter. 

INTRODUCTION 

Pollution problems in the sea and in the adjacent estu- 
aries play  an important role in coastal engineering and de- 
mands more and more sophisticated computational technique to 
be solved in a satisfactory way. 

This paper deals with the case where two fluids with 
different densities are found in an estuary, with very small 
advection. After initial mixing in outlets and jets has oc- 
curred amore calm phase will be found where a light fluid is 
overlying a more dense fluid, and vertical mixing is due only 
to local turbulence. 

This situation is common in many cases where the coastal 
engineer is involved such as: 

Senior research engineer, River and Harbour Laboratory 
at the Norwegian Institute of Technology, Trondheim, 
Norway. 
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1) Thermal power plants with density differences between 
heated water and cooler recipient water. 

2) Water power plants with density differences between fresh 
water in the mountains and salt water  in the recipient. 

3) Outlets that belong to the municipal sewage system. 

M-)   Outlets and rivers containing different kinds of sediments 
in suspension. 

Figure 1 shows a typical Norwegian fjord.  The advec- 
tion that occurs here is mainly wind driven.  (See H. Rye, 
1973 [1]). The algorithm presented here can also be extended 
to include advection and treat a case like th:\s , as outlined 
below. 

• 

Figure 1.  Site for collection of field data, 
fjord, Norway. 

Romsdals- 

MATHEMATICAL ANALYSIS 

Let us now consider the one-dimensional case without 
advection.  The problem under consideration is shown in 
Figure 2.  A salinity profile varying with depth is slowly 
mixed  due to local turbulence.  In the case under consider- 
ation no current is acting and all diffusion is vertical. 
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Figure 2.  Definition of the problem. 

The general equation for this, situation is: 

3s   3  ,„   3s, 
3t 3x 

(D 
3x (1) 

D is the diffusion coefficient varying both with time and 
depth, x is the vertical co-ordinate, t is the time co-ordinate 
and s is the concentration of substance; here salinity (in 
other cases this could be heat or concentration of particles 
in suspension). 

The boundary conditions for this situation are that the 
salt flux through the surface is zero, and that the time 
derivative of salinity integrated over the whole volume is 
zero as no  material is transferred to the system from out- 
side the control volume.  (Eq. (2) and (3).) 

FLUX 
x = h 3x 0 (2) 

!s_ 
3t 

dx (3) 

Integration of the general equation with respect to x 
for a certain time kept constant gives 

/ x _3s o 3t 
dx = D 3s 

3x + CONSTANT (4) 

An integration constant appears here on the right side. 
This constant can .be determined as shown in eq. (5) where 
the integration is taken over the whole volume. 

CONSTANT = / 
h _3s 
o 3t dx -[ D — 1 = 0 3xJ   u 

x = h 

(5) 
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The last term is the flux through the surface which is 
known to be zero, and the first term is also zero due to 
continuity.  Thus the integration constant in eq. (4) is 
determined to be zero.  The diffusion coefficient can then 
be found as the integral on the left hand side divided .with 
the salinity gradient.  Eq. (6) thus shows the determination 
of the diffusion coefficient for a certain time ti and a 
certain depth xi . 

[D] 
X = Xi 

t = t! 

r,Xl  3j3 .  , , 
uo at  axJt=ti 

L3xJx=xi 

t = ti 

(6) 

This result is now transferred to an algorithm for 
computer work. 

Figure 3 shows the flow sheet of the computer version 
of the algorithm. . The input is recorded density profiles. 
They are written out for each series or test. 

AN ALGORITHM FOR VERTICAL DIFFUSION 
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Figure 3.  Flow diagram for algorithm. 
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A vital part of the programme is shown in two boxes, 
viz. a routine for numerical differentiation and a routine 
for a partial regression analysis.  When a series of 
recordings is ended the computational part of the programme 
is called.  This computes all the derivatives shown. Further, 
the programme uses a routine for numerical integration in 
which the input is both the salinity gradient with respect 
to time and the second derivative of salinity with respect 
to time and depth.  From this the integral is found, and 
division with the local salinity gradient then gives the 
diffusion coefficients.  Further, a special part of the pro- 
gramme computes all parameters that are- considered necessary 
for 'the analysis of diffusion, such as density gradient, 
Brunt-Va.isa.la frequency, dimensionless diffusion coefficient, 
and Reynolds number for turbulence.  The programme then goes 
on and computes potential energy and writes all parameters in 
tables. 

Finally the regression analysis is called and it is 
then possible to investigate if there is any correlation 
between diffusion coefficients and selected density or tur- 
bulence parameters. This programme gives the final correlations 
directly.  It takes density profiles as input and it gives 
the final correlation between diffusion coefficients and 
selected parameters immediately as output.  It should, 
therefore, be an effective tool for research work in this 
field. 

MODEL EXPERIMENTS 

Experimental laboratory data for vertical mixing were 
used to test the algorithm.  These were obtained in a small 
test tank that contained a layer of fresh water overlying 
a layer of salt water.  A fine mesh grid was installed in 
the test tank and this could oscillate with different fre- 
quencies and amplitudes and thus generate the necessary 
turbulence.  Two types of fine mesh grid were used, one 
with horizontal nets and one with vertical nets.  Water 
samples could be extracted from the test tank through small 
tubes and the salinity was then determined with a conduc- 
tivity meter.  The temperature was kept constant during the 
tests.  The test arrangement is shown in Figure 4. 
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RESULTS 

Figure 5 shows a typical test result, after 2 minutes 
testing.  The density profile is mixed to some extent.  The 
Brunt-Vaisala frequency is the reference parameter for the 
density profile that is considered most important.  It is 
defined by the equation: 

N 
P    dx o 

(7) 

where g is the acceleration of gravity, p  is the local 
density and 3p/3x the density gradient.   It can be derived 
from the density profile.   It shows a clear maximum in a 
certain level.  2TT divided by this frequency is the lowest 
period with which internal waves can exist, and the distri- 
bution of the Brunt-Vaisala. frequency is thus one of the 
most important dynamical characteristics of an estuary. 
Corresponding with this we can here see the computed verti- 
cal diffusion coefficient from the algorithm.  It has a 
local minimum where the Brunt-Vaisala frequency has its 
maximum, and it has two local tops.  This illustrates the 
inverse proportionality between these two parameters. 

DENSITY a = 
(p-103) (kg/m3) 

rSURFACE 

TEST NO. 7 

BRUNT - VAISALA 
FREQUENCY N: 

DIFFUSION 
COEFFICIENT D: 

0    2    4    6    8 
o- (kg/m3)—» 

0.6   0    1     2    3    « 
*        D (cm2/sec)—*• 

Figure 5.  Test result after 2 minutes mixing 
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Figure 6 shows a correlation between the diffusion 
coefficient and the squared Brunt-Vaisala frequency in one 
of the tests.  The figure contains 154 points taken at 
different times during the 6 minutes test period.  There 
is a considereable scatter.  Still the partial regression 
analysis showed an inverse proportionality between the two 
parameters with a multiple correlation coefficient 0.94. 

N'       (»C-'J - 

SQUARED   BRUNT-VAISALA   FREQUENCY 

Fig. 6.  Diffusion coefficient as a function of Brunt-Vaisala 
frequency. 

Table 1 gives the equations for similar obtained corre- 
lations for all five performed tests. 
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TABLE 1 

REGRESSION ANALYSIS NO 2 

Level of significance to enter variable 

Level of significance to delete variable 

Minimum (residual variance/observed variance) 

M-. 0 

ID"1* 

Correlation between 

D and N2 

Equation 

8.989 • 10 

(N2)^ 
9928 

4.957 • 10 
1 

(N«)° 9852 

1.247 • 10" 1 

CN2)U 9551 

2.572 • 10" 
1 

(M»>° 9008 

1.597 • 10" 1 

Number of 

observations 

Multiple corr. 

coefficient 

Residual 

error 

Anti-log 

residual 

,.  Sr/0.43H3 

cm /sec 

sec~l 

The power in the equation for the squared Brunt-Vais'ala 
frequency is in the first test 0.99 obtained for 66 points. 
In the second test the power was 0.9 9 obtained for 3 3 points. 
In the following tests the power was 0.9 6 for 6 6 points and 
0.90 for 66 points respectively, and in the last test the 
power was 0.96 for 15M- points.  Altogether 385 points were 
recorded and correlation coefficients varied between 0.9 4 
and 0.9 9 as shown in the table. 

The power for the squared Brunt-Vaisala frequency was 
thus in all cases found to be a little less than one. 

Fig. 7 further illustrates that and shows the calculated 
best fit obtained from the regression analysis for all 5 
tests performed, and the correlation coefficients.  Further 
it is indicated that two types of grids, one horizontal and 
one vertical are used with different oscillating frequencies, 
and it is observed that the diffusion coefficient for both 
types of grids increases with increasing oscillation frequency. 
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Fig. 7.  Results of regression analysis.  Diffusion coeffi- 
cients as functions of Brunt-Vaisala frequencies. 

The next step is then to relate the obtained results to 
the turbulence that acted in the test tank. 

DESCRIPTION OF TURBULENCE 

It is well known that if u denotes the velocity fluctuation 
in the turbulence then the scalar energy spectrum is given by 
equation (8^ where < is the wave number. 

-IS     E(K) dK 
Q (8) 

We can then form a Reynolds number consisting of the 
root-mean-square of the velocity fluctuations multiplied by 
a characteristic length scale for the eddies 1 and divided by 
the kinematic viscosity (Eq. (8)). 

Re = (u2)2-l 
(9) 

Unfortunately it was not possible to make direct measurements 
of the turbulence when the tests were performed.  A first 
estimate of the turbulence parameters is therefore extracted 
from the sinusoidal oscillation of the agitating grid.  Ir. 
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Fig. 8 one of the bars-in the grid is shown in the mean 
position and in positions with maximum amplitudes, where the 
velocity is zero.  The streamlines according to potential flow 
theory are also shown for the case where the oscillating 
velocity is maximum. 

OSCILLATING   CYLINDER 

/""> 

Fig- Oscillating cylinder. 

It is believed that it is the streamlines in this situa- 
tion that dominate the flow pattern, as the velocity becomes 
smaller and the circles decrease near the amplitude maximum. 
Therefore as a first estimate  the characteristic length of 
the eddies 1 is taken to twice the amplitude, a. 

1 2a (10) 

The validity of this approach to the macro-length scale is 
dependent on the Reynolds numbers for the oscillating cylinder. 
It will not be possible to obtain a better estimate without 
access to experimental data.  Eddie shedding will occur from 
the back-side of the cylinder, but1 is defined as the_maximum 
length in which velocities can be correlated and it is there- 
fore equation  (10) and not the scale of the smaller eddies 
that is the best approximation for the scale of turbulence. 
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Further as a first approximation to the root mean 
square of the turbulent fluctuations the root mean square 
of grid velocity is taken as outlined in equation (11)' .  w 
is here the cyclic frequency in the oscillation.  This is 
a reasonable first estimation as the added mass coefficient 
for an accelerated cylinder is near to one. 

(u2)i = [i fo  a2 io2 sin2 (wt) dt]4 = £L  au      (n) 

It is now possible to form the characteristic Reynolds 
numbers describing the turbulence.  When the result for the 
root mean square of the velocity fluctuations and the 
characteristic length scale is set into equation (8)    we 
obtain:      

Re = ^121^1  -_ 0_^± (12) 

In the experiments this Reynolds number was varied from 
l'lO1* to 1.6-101*, which indicates that a well developed tur- 
bulence was obtained. 

It is possible to obtain a dimensionless parameter that 
describes the process, simply by forming the ratio between 
the stability frequency (the Brunt-V'aisala frequency N) and 
the agitating cyclic frequency to. 

(13) 

All data for diffusion coefficients obtained in 3 different 
tests with the horizontal grid and with 3 different agitating 
frequencies were then correlated with this dimensionless 
number and presented in a dimensionless form, so that the 
ratio between diffusion coefficient and the kinematic visco- 
sity is given.  The result is shown in Fig. 9. 
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Fig. 9.  Diffusion coefficients as a function of the ratio 
between stabilizing and agitating frequencies. 

All data in the 3 different tests, 165 altogether, 
correlated with a multiple correlation frequency 0.82 and the 
eauation obtained was: 

D _ 2.25-105 _ CONSTANT 
V "  61-87    (N/OJ) 

1-87 
(14) 

The ratio between the diffusion coefficient and the 
kinematic viscosity can thus be expressed as a constant 
divided by the frequency ratio to the power 1.87. 
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A typical order of magnitude for the diffusion coeffi- 
cients involved here is  10 cm2/sec. 

EXTENSION TO CASE INCLUDING ADVECTION 

The general equation for three-dimensional diffusion 
with varying diffusion coefficients is: 

H + Ux ft ' Uy g + \  If  = h   (Dx • f » + 

1_ (D  . 12. ) + -3_ (D .— ) (15) 

Here x is the vertical coordinate while y and z are 
horizontal coordinates.  If advection in one direction domi- 
nates , as in the case in many estuaries with wind driven cir- 
culation, we obtain: 

fl+Uy!f     ="|x<Dxii> (16) 

Horizontal diffusion terms might be included here on 
the left side as a constant or as a function of space coordi- 
nates.  For the vertical diffusion coefficient we can then 
obtain: 

x x 
/  ~ dx +/  U il". dx 

D =  ,°. at  . Q . y ay  (17) 
X 3s 

3x 

If the current velocity is recorded the algorithm can 
then be extended and operated for a case with advection. 

Field data in the form of density profiles, current 
profiles and wind, tide and wave recordings have already 
been collected from a typical Norwegian fjord which has 
been found suitable  for further studies.  This is the Roms- 
dalsfjord earlier mentioned and shown in Fig. 1. 

Use of the algorithm on the field data obtained here 
is in progress. 
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CONCLUSION 

The purpose of this project was to develop a mathema- 
tical method that is able to treat the case of vertical 
diffusion with a diffusion coefficient varying with time 
and dept. 

This was done and a computer programme was developed 
for the one-dimensional case without advection. 

Model experiments were performed to test the algorithm. 
The results fr>om these showed that the ratio between the 
stabilizing Brunt-Vaisala frequency and the agitating cyclic 
frequency was a governing parameter for the system and di- 
mensionless diffusion coefficients could be expressed as a 
funtion of this parameter. 

The algorithm can easily be extended to include advec- 
tion, and is therefore usefull also for the treatment  of 
field data in more complex situations. 

This extension can be raade step by step, and might in- 
clude more and more terms in the general equation for diffu- 
sion in space and time with variable diffusion coefficients. 

Further knowledge concerning development and decay of 
turbulence in the presence of a density profile is urgently 
needed. 
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