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LONG WAVES GENERATED  BY COMPLEX BOTTOM MOTIONS 
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and 

F. Raichlen 
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1.  Introduction 

Studies of tsunami generation often employ simple models of the sea 
floor dislocations to permit tractable analytical solutions.  Although 
these solutions provide basic insight into the generation process, they 
are incapable of producing explicit results for prototype events where 
both the spatial and temporal distributions of the sea floor dislocation 
may be quite complicated.  Herein we exploit the apparent linearity of 
the generation process and demonstrate both the use and validity of the 
superposition principle to construct solutions for complex bed motions. 
Analytical and experimental results are presented for a monopolar dis- 
location (block upthrust or downthrow) with a complex time-displacement 
history.  The time history used in the computations is obtained from an 
integrated accelerogram recorded at Pacoima Dam, near Los Angeles, 
during the earthquake of February 9, 1971. A complex spatial deforma- 
tion is not used in order to enable experimental verification of the 
analytical results. This is unfortunate since it appears that the 
details of the time-displacement history are not important for proto- 
type phenomena where the motion may be considered instantaneous.  How- 
ever, it is important to note that the analysis treats both space and 
time variations in an identical manner; hence, confirmation of this 
approach for complex time variations strongly suggests analogous behav- 
ior for complex spatial variations. 

Finally, we examine and compare several alternative time-displacement 
histories for the mean motion. It is shown that the results for each mean 
motion can be unified by introducing a velocity as a descriptive param- 
eter which is based on the kinetic energy input of the moving bottom to 
the overlying fluid. 

2.  Time-Displacement History 

To define a complicated time-displacement history with relevance to 
earthquake-induced ground motions, we have chosen an accelerogram for 
the vertical component of motion recorded at Pacoima Dam (near Los 
Angeles) during the earthquake of February 9, 1971.  The accelerogram 
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BOTTOM MOTIONS WAVES 641 

shown in Figure 1 may be integrated numerically using appropriate pre- 
cautions (e.g., see Nigam and Jennings, 1968), to yield a time history 
of the vertical ground displacement.  Results of the integration pro- 
cess for the "smoothed" velocity history and the corresponding ground 
displacement history are shown below the accelerogram in Figure 1. 

An analytical representation of the algebraically complex time- 
displacement history of Figure 1 over a finite record interval, 
0 <  t <  T, may be constructed using a Fourier series of the form: 

N 
?(t)  = C + I    C sin (K t + B ). (1) v      o      n     n    n 

n=l 

In (1) C are the amplitudes of the Fourier components with C repre- 
senting the mean (permanent) ground displacment, Kn are the component 
wave frequencies, and Bn are the component phase angles. The accuracy 
of (1) in representing the integrated displacement of Figure 1 is 
determined by the number of components N retained in the Fourier sum. 
Results of computations with N = 18 are illustrated in Figure 2; this 
truncated sum will be adopted in the subsequent analysis. 

It should be emphasized that both the instrument characteristics 
and the numerical integration techniques used to obtain ground dis- 
placements from acceleration measurements necessarily distort (filter) 
information in long period components.  In particular, the mean (and 
permanent) displacement of the integrated motion shown in Figure 1 (and, 
of course, its Fourier representation in Figure 2) is not expected to 
accurately model the actual permanent deformation.  To compensate for 
this distortion, we may again exploit the superposition principle and 
add a nonsinusoidal component to the Fourier series representation of 
(1).  As an example of this approach, consider the ramp motion in time 
of the form: 

Cr(t)  =  C0t/T (2) 

during the time interval 0 £ t £ T; other choices for the mean motion 
are discussed and compared in section 5.  In practice, the sum of the 
mean component resulting from the Fourier synthesis, COJ and the addi- 
tional component Q, from (2) should be chosen to equal the actual per- 
manent ground offset.  Hence, a general representation for a complicated 
time-displacement history becomes: 

C(t) = C + X  t/T + E C sin (K t + 6 ). (3) v      o   o     n=l n     n    n 

3.     Solutions of the Water Wave Problem 

Consider a two-dimensional   (x,y)   and incompressible ocean of uniform 
depth h  initially in equilibrium with the earth's  gravitational  field g 
which acts  in the negative y direction.     At time t = 0 a section of the 
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sea floor begins to deform vertically with a time and spatial variation 
given by £(x,t). we seek the inviscid, irrotational, and barotropic 
deviations ri(x,t) of the ocean free surface from its equilibrium posi- 
tion. With the coordinate system at the equilibrium position of the 
free surface, the linearized description of motion in terms of a veloc- 
ity potential <() = <J>(x,y,t) is: 

<t>xx(x,y,t) + <l>yy(x,y,t) = 0               (4) 

<f>y(x,-h,t) = ?t(x,t) (5) 

*yCx,0,t)  = nt(x,t) (6) 

<f>t(x,0,t)  = -gn(x,t) (7) 

where subscripted variables indicate partial differentiation.  It is 
convenient to eliminate n(x,t) in (6) and (7) by combining to yield a 
single condition for the velocity potential: 

*tt(x,0,t) + g* (x,0,t) = 0 (8) 

Using the Laplace transform in t and the Fourier transform in x, equa- 
tions (4^, (5) and (8) become: 

*  (k,y,s) - k2*(k,y,s) = 0 (9) 

$ (k,-h,s) = sc(k,s) (10) 

- s2 - 
<)> (k,0,s) +—<|>(k,0,s)  = 0 (H) 

where the overbar of a function f(x,t) indicates: 

f(k,s)  =    dx   elkx e"st f(x,t)dt. (12) 

Solving (9), (10), and (11) for <)>(k,y,s) and noting from (7) that 

n(k,s)  = - (s/g)^(k,0,s) (13) 

we find: 

n(k,s) = s2 c"(k,s)/(s2 + 0J2) cosh kh (14) 

where u>2 = gk tanh kh.  Inverting the Laplace and Fourier transforms 
yields: 

,    f<» r. . .     rV+ir    ?    -ikx    st —,,     -       -i 
,    ^        1    I     |li">      If s2 e e      C(k,s)       I     , .    , 
^^  =  2ij     {r-    2W (s2 + to2)   cosh kh    dS/ ^ (15) 

u-ir 
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where the complex inversion integral for the Laplace transform has been 
used.  In (15) u is the wave frequency (to = is) and k is the wavenumber. 
Explicit results for specific deformations of the sea floor £(x,t) will 
be developed now. 

3.1 Solution for a single Fourier component 

Consider a block section of the sea floor of length 2b whose time- 
displacement history corresponds to a single Fourier component of (1). 
With the coordinate system centered above the block section, we have 

?n(x,t) = CnH(b2-x
2)[sin(KnT+gn)H(T-t) + sinCy: + (5n)H(t - T)] (16) 

where H( ) is the Heaviside step function.  Finding the transform of 
(16), substituting into (15), performing the integration around the 
Bromwich contour, taking only the real part of the resulting integral, 
and noting that the integrand is an even function of k, we find: 

Vx^ = IT \    "k cosfkh"' iA+B - H^ fC+D+£] \  dk      <17) 
o 

where 

A =  sin g   [(a)2 sin tot  -  K2sin K t)/(to2  -  K2)] (18) nL n n n 'J J 

B •=  Kn cosBn[((o sin (ot  -  K    sin Knt)/(to2  -  Kn
2 ) ] , (19) 

C =  sin(KnT +  Bn){[m2  cos w(t-T)   -  Kn
2   cos  Kn(t-T)]/(u>2-Kn

2 ) I  (20) 

D =  Kncos(KnT+Bn)|[0) sin to(t-T) - Knsin  Kn(t-T) ]/(to2- Kn
2 ) \ (21) 

E =  -  sin  (K T +  8 )   cos to(t-T). (22) 

The  final  integration over wavenumber k in   (17)   is obtained by numerical 
quadratures. 

3.2    Solution  for ramp mean motion 

The ramp time-displacement history of  (2)   for the block  deformation 
is  described by 

C(x,t)     =     CQ H(b2  -   x2)    [tH(T -   t)/T +  H(t  -  T)]. (23) 

Following the same procedure outline in section 3.1, we obtain  (again 
after considerable algebra)  the water surface motion n    due to the ramp 

nr(x,t)   =  2^fC°l k
co

X
sHh

kb-  f^l [sin tot - H(t - T)sin M(t-T)]dk. (24) 
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Again, the final integration over wavenumber k must be evaluated numeri- 
cally. 

4.  Comparison of Theory and Experiment 

As noted earlier, the simple block deformation of the sea floor was 
chosen to enable experimental verification of the analytical model 
developed for complicated time-displacement histories.  The experimental 
facility used in these tests has been described in detail by Hammack 
(1972, 1973).  Basically, the wave-maker consists of a rectangular 
piston in the bottom of a wave tank (and spanning its width) whose 
motion is controlled by an electro-hydraulic-servo system.  The servo 
system converts a time-voltage command signal into a proportional verti- 
cal displacement of the piston.  For the experiments reported herein, 
the piston length in the direction of wave motion is b = 61 cm while the 
quiescent water depth above the piston is h = 10 cm.  Before presenting 
results of the tests, we describe the motivation for choosing other 
experimental scales. 

A "global" time scale for the forcing of the overlying ocean by the 
sea floor is the period T.  The appropriate time scale for the gravita- 
tional response of the long barotropic wave modes is b/(gh)^ which cor- 
responds to the time required for waves to escape the generation 
region.  For prototypical earthquakes the ratio of the forcing and 
response time scales, T = T(gh)^/b, termed the time-size ratio, is small 
so that details of the time-displacement history generally are not 
important.  However, our interests herein require that the details of 
the temporal motion have a significant impact on the generated wave 
structure.  Hence, the period T for the experimental tests must be 
scaled so that T exceeds unity; in fact, for the experiments a period 
T = 4 sees was chosen which yields T = 6.5.  Previous experiments by 
Hammack (1973) also indicate that the generation process for proto- 
typical tsunamis is linear and that nonlinearity remains insignificant 
for vertical displacements which do not exceed about 20% of the over- 
lying ocean depth.  This criterion is adhered to in the experiments by 
restricting the instantaneous displacement of the piston to less than 
2 cm. 

In the first test we examine experimental and theoretical results 
for the time-displacement history shown in Figure 2 using experimental 
parameters T = 4 sees and a chosen permanent (mean) displacement of 
C0 = 0.38 cm, with the amplitudes Cn and frequencies Kj, of the eighteen 
Fourier components used in Figure 2 scaled appropriately.  (In Figure 2 
the corresponding parameters of the actual ground displacement are 
T = 40 sees and C0 = 7.63 cm.) The scaled Fourier components are then 
summed and the result is converted to an analogue (time-voltage) 
signal which is used to command the wavemaker.  The resulting wave 
motion at the leading edge of the piston (x = b) is measured, and the 
results are shown in Figure 3.  Theoretical results at x = b are 
evaluated for each of the eighteen (scaled) Fourier components accord- 
ing to (17) and summed to yield 
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ri(b,t)  = CQ + Z n (b,t); (25) 
n=l 

the results also are shown in Figure 3. The excellent agreement between 
the predicted and measured data is self-evident. 

Similar results are shown in Figure 4 where a ramp mean motion with 
an amplitude of z,0  = 1.33 cm is added to the Fourier synthesis of Figure 
2.  The total permanent displacement of the piston is C0' = ^o + ?o = 

1.71 cm which has been used to normalize the measured and theoretical 
wave amplitudes. The theoretical result is equivalent to (25) with an 
added component for the ramp computed from (24).  Again, the agreement 
between measured and computed data is excellent with the wave structure 
clearly showing the added volume (mass) resulting from the enhanced mean 
displacement. 

5.  A Comment on Mean Motions 

In previous studies (Hammack, 1972, 1973) two additional models for 
the mean displacement of a block section of the sea floor have been 
examined.  These time histories are: 

a. exponential:  Ce(t) = ?0[1 - exp (-l.lt/T )] 

b. half-sine:   C (t) = ? [(1 - cos irt/T )H(T -t)/2 + H(t-T )] 

and we repeat for completeness the mean motion introduced here: 

c. ramp:        Cp(t) = ?0'[tH(Tr-t)/Tr + H(t-Tr)]. 

The three mean motions listed above span a wide range of displacement 
characteristics. We note that the choice of characteristic time scales 
Te, Ts and T are, in fact, arbitrary to a certain extent even though 
"natural" choices are apparent.  (This flexibility is most obvious for 
the exponential motion where Te was chosen for experimental convenience 
to represent the time for two-thirds of the displacement to occur.)  It 
has been found that the properties of waves generated by these motions 
correlated strongly with the time-size ratio T based on these time 
scales.  For example, the maximum wave amplitude, say rio» occurring at 
x = b when normalized by the permanent displacement ?0 exhibits a simple 
and similar functional dependence on T for each bed motion. With the 
size scale b/h of the dislocation fixed and for T«l, the normalized 
amplitude, i"lo/£o> reaches a maximum value of one-half for all size scales 
exceeding unity.  Bed motions with x«l are termed impulsive.  For T 
very large, termed creeping generation, ri0/C0 decreases at a rate which 
is inversely proportional to T. The constant of proportionality for 
creeping generation varies with the specific choice of'the characteris- 
tic time scale for the mean motion. Since it is unlikely that any of 
these mean motion models is "correct" from a geophysical point of view, 
there is a need to seek a unification of results by generalizing the 
concept of characteristic time scale. One generalization which closely 
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produces the desired unification is the following.  Consider a velocity 
V, where V2 is the kinetic energy imparted to the fluid by the sea floor 
divided by one-half the total mass of fluid displaced during bed motion 
(%pb;0); then V is given by: 

i   h 
v  =  T j    ct2 d? (26) 

and a corresponding time scale T = C0/V.  In terms of this time scale 
the time-size ratio becomes 

x*  =  Tfgh^/b  = •e0(gio5Vbv (27) 

The variation of ri0/S0 at x = b for b/h = 6.1 with x* is shown in Figure 
5 for each of the mean motions; both theoretical and experimental 
results are presented.  For all of the experimental data we have taken 
C0/h < 0.2 to avoid significant nonlinear effects. The collapse of 
results for such a wide range of mean motion characteristics shown in 
Figure 5 is good although a small spread still exists. 

6.  Conclusions 

We have demonstrated both the application and validity of a strategy 
which employs multiple uses of the superposition principle to develop 
theoretical solutions for waves generated by sea floor motions with com- 
plicated time-displacement histories. Although a more useful test for 
prototypical phenomena would utilize complicated spatial distributions 
for the sea floor dislocation, the tests herein were restricted to 
simple block dislocations due to experimental limitations. However, it 
is emphasized that the solution method does not distinguish between 
space and time, and the validity established herein strongly suggests 
that the methods could be extended to complicated spatial deformations. 
Finally, we have demonstrated that wave properties (in particular the 
maximum amplitude of waves escaping the generation region) for a wide 
range of mean motion characteristics may be (almost) collapsed into a 
single functional relationship in terms of a time-size ratio based on an 
average vertical velocity of the sea floor obtained from energy consid- 
erations. 
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