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ABSTRACT 

A new method of calculation of wave diffraction around islands, off- 
shore structures, and of long wave oscillations within offshore or 
shore-connected harbours is presented. The method is a combination of 
the finite element technique with an analytical representation of the 
wave pattern in the far field. Examples of application are given, and 
results are compared with other theoretical and experimental investig- 
ations. 

INTRODUCTION 

The prediction of possible resonant response of harbours to long wave 
excitation may be an important factor at the design stage. Hydraulic 
scale models have the disadvantage of introducing some bias in the 
results due to wave reflection on the wave paddle and on the tank 
boundaries. Numerical methods on the other hand can avoid such spurious 
effects by an appropriate representation of the unbounded water medium 
outside the harbour. 

Various numerical methods exist for calculating the seiche motions in 
harbours of arbitrary shape and water depth configuration. Among these, 
the hybrid-element methods, as described by Berkhoff [l] , Bettess and 
Zienkiewicz [2] , Chen and Mei [3j , Sakai and Tsukioka [8] use a com- 
bination of the finite element technique with other methods for repre- 
senting the velocity potential within the harbour and in the offshore 
zone. This paper presents a new method based on the same general 
approach, with an analytical representation of the wave pattern in 
the far field. It differs from the former methods in several aspects 
stressed hereafter. 

We consider here two kinds of applications: 

a) the first is the study of wave diffraction by islands or bottom 
seated obstacles in the open sea and the study of wave oscil- 
lations within and around an offshore harbour. 

b) the second is the study of wave oscillations within a shore- 
connected harbour with a totally reflective coastline, which 
is assumed rectilinear beyond a certain distance. 
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BASIC EQUATIONS 

The numerical calculation of long period water oscillations in harboursof 
arbitrary shape and bottom configuration is based on the linear shallow 
water wave equation for an inviscid fluid: 

v.[hvf] -i rtt (1) 

where £(x,y,t) is the water surface elevation above mean see level, 
h(x»y)   is the water depth distribution, 
g      the acceleration due to gravity. 

The numerical models based on the present method include two domains: 

in a bounded region D. including the harbour and the vicinity of the 
harbour entrance, the water depth is defined according to the bottom 
topography on the site studied, and a finite element technique is 
used for solving the above equation. 

In the outer region D„ extending to infinity, and bounded by an unli- 
mited rectilinear reflecting coastline in the case of a shore-connec- 
ted harbour, the water depth is assumed constant, equal to h_, and an 
analytical solution of (1) is used in the form of a finite series 
expansion. 

The boundary C.„ interconnecting both domains is either a full circle 
in the case of an island-type harbour or structure, or a half circle in 
the case of a shore-connected harbour, as shown in figure 1. 

Fig.l Definition sketch: (a) offshore case ; (b) nearshore case 
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A periodic excitation by a plane incident wave of arbitrary direction a, 
frequency f (or angular frequency to) and height 2a„ is taken as input 
to the model at infinity and the steady-state dynamic response of the 
model is calculated. A variable frequency scanning technique is used 
to detect the resonant modes. 

We thus reduce the problem to seeking, for a finite number of wave angu- 
lar frequencies w, a compleK function of space r(x,y) such that: 

r(x,y,t) = Re |f(x,y) exp (-iwt)[ (2) 

This  function  is  a  solution of  the Helmholtz equation: 

v.[hvr) +^F = o <3) 

We shall refer to the solutions of (3) in D. and D„ as J\ and f~respecti- 
vely. The boundary conditions imposed on these solutions are as follows: 

dfx _    ar2 _ 
c3nx   "  "    5n2  "  G12(e) 

on C12 (5) 

t2    —*-     ?A 
for r—*-°° (6) 

The first condition expresses that waves are totally reflected from all 
solid boundaries i.e. harbour structures and coastline. This assumption 
is generally valid as wave steepness is low for the periods considered. 

The set of conditions (5) express the continuity of the water surface ele- 
vation and of the horizontal velocities at. the common boundary C. . 

The last condition imposes the behaviour of the solution in the far field, 
behaviour which depends on the type of application considered. 

In the case of an offshore harbour or structure ?, is representative of 
the plane incident wave, which can be expressed, m polar coordinates (r,0) 
with the origin at the centre of C,„, as: 

fA =  f  - an s  tn(i)  J  (kr) cos n(6-a) (7) A    i     U n=Q  n     n 

with: i - V- 1 
J 

= the Bessel function of order n 
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k = the wave number associated with frequency OJ by: 

k = W(gh )'112 (8) 
y-0 

(9) 

In the case of a shore-connected harbour, f. is representative of the 
superposition of the incident waves and of their reflection on the coast- 
line, which is considered as totally reflective. Taking the origin of 
along the shoreline 5 f. is expressed as: 

CO 

iTA = 2aQ 2  £n(i) j     tkr^ cog na CQS ne ^1Q^ 
n=u       n 

The solution in D„ is consequently split into two components ?, and £„, 
where f is representative of the diffracted waves due to the presence of 
the harbour or of the isolated structure under consideration. These waves 
radiate outward from the latter to infinity, and thus should satisfy 
Sommerfeld1s radiation condition: 

(11) lim K[ -57  -lkfD]}"° 

VARIATIONAL FORMULATION 

The solution of the problem is obtained through a variational approach, 
which is briefly described here. Considering first the two domains inde- 
pendently and the function G.? (6) in (5) as a given boundary condition, 
the solution in D. is ascribed to make stationary the functional: 

Vf> -i //|h(vf)2-V"lds- /    h ri Gnd° (12) //H2-V2]ds-/ 
on  in D„   is  associated with  t 

F(f> --i//D[v-(hvn+^r]rdB+| h[i|i+G12]fd,r       us) 

Since f_ is represented in an analytical form which satisfies a priori 
equation (3), the first integral in (13) actually vanishes. 

If we now consider G.„ as an unknown function, our objective is to make 
stationary, for any first variation of J\ , J"? and G,„, the functional 
resulting from the addition of (12) and tl3), i.e.: 

F(0 = \    l)n     h(Vf)2 -^f2  ds+}  f   h v^- f da 

+J   hG12<r2- r^dff 
'C12 

(14) 
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G]2is a periodic function of 0, which can be represented, in the case of 
an offshore structure, by a Fourier series expansion with unknown coeffi- 
cients C. , C„ . The requirement of stationarity of (14) for arbitrary 
first variations of these coefficients, leads to the following conditions: 

I f jcoeme) 
yC12       (sin me \ 

m = 0,1,2... (15) 

When these conditions are satisfied, the last boundary integral of (14) 
vanishes. 

In the case of a shore-connected harbour, G.„(0) is an even function 
of 9. In this type of application,only those conditions in (15) involving 
cos ID0 are necessary. 

The above functional can be represented in terms of the complex function 
f  by insertion of (2). It then appears as a function of time of the form: 

F(D  = j  Re | Fc(?) + Fv(0 exp (2iwt)| (16) 

F (O 
•// 

hVf • vr 
i     i rlrl 

ds + /  h ^-=- f do- J„ on.  2 

V     J%    L   l S  1       J      L12 

"12 

ar^ 
an? * r. do- 

where >• * is the complex conjugate of £". 

(17) 

(18) 

The values of f? and of its normal derivative along C,„ depend on the 
values of f,     on this boundary, through the conditions fl5). 
Consequently, the values of f,  at N arbitrarily  chosen nodes within 
D. and on its boundary constitute a complete set of independent degrees 
or freedom of the functionals F and F . By expressing F and F  in terms 

C      V c      v 
of these variables, it can be shown that: 

sFi    Var* / 
(19) 

In view of this property, the stationarity of F(0 is ensured at any 
time t when: 

 c 

art 
= 0 n = 1,2... N (20) 
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SOLUTION FOR AN OFFSHORE HARBOUR OR STRUCTURE 

In the offshore case, in which C „ is a full circle, the solution in 
domain D„ involves the following series expansion of f 

?„ (r,e) =   f H(1) (kr) ["•»,  cos me + ro
0 sin mel     (21) D „ m 1m im 

m=0 t J 

where H ' is the Hankel function of the first kind and of order m. 
m 

The insertion of (21) into (15) leads to: 

2TT 

lm 

"2m 

nrs— I (
V^A>  i— Jd®      *-0,1.2...        (22) 

0 sin m0\ 

Where H stands for H  (kR„), R„ being the radius of C,.. 
m m    I l i.L 

The integral in (22) which involves f can be determined exactly for any 
value of the integer m, since the integrand is expressed in terms of 
trigonometric functions. On the other hand, the integral which involves f 
can only be determined approximately, as the latter function of 0 is cal- 
culated only at a discrete set of points along C,~. Assuming that £. is 

i cos &  ) /cos »o» 

2   U^cM  -V^^ViinnJ  <23> 
p=l 

en  = 2WN2 

' lp / sin 0 r {     mp 

These_expressions can also be derived by a direct identification of $"„ 
with \.   at the N„ points of the boundary C,?, and by applying a classical 
Fourier analysis. 

It is known from the theory of spectral analysis that the sampling of the 
periodic function \. (0) at discrete points leads to a parasitic effect on 
the associated Fourier spectrum, so that it would be unrealistic to extend 
the application of (21) and (23) beyond a limiting value m = N„/2. The 
order N of the finite series expansion used in practice is moreover 
dependent on the accuracy assigned in the numerical calculations. The 
latter criterion leads to a dependance of N  on the value of the para- 
meter kR_ . 

It is seen from (23) that f and its normal derivative along C „ are 
linearly dependent on the value of f. at the N„ nodes located on this 
boundary: 
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h-        2, A2p((» flp p=l 
(24) 

at, 
9n 2   Bp<9) ?lp + "2(0) 

P=l 

Calculations that will not be given in detail here, lead to the following 
expressions: 

cos m (9- 6 ) 
P 

X2p(9) 
1 

2     m=0 

ve) 
N 

k            S 

= - —      2 
2    m=0 

"2(6) 

N 
2a                    £ 0        2       i 

2       m=0     i 

m 

, P (kR„) cos m (O-e ) (25) 
TD m  2 p 

(i)"1*1 cos mCe-a) 

where the prime stands for the first derivative of the function consi- 
dered. 

Within the domain D., the problem is solved by a standard finite element 
technique. The solution and its spatial derivatives are represented by 
expressions of the form: 

h <*•*> - 2 Vx^i, 
(26) 

^- = 2 7  Mn ;T^= 2 7  
Jln 

dx       xn <jy       yn 

where the summation extends over the whole set of finite elements, 7 is 
an arbitrarily chosen interpolation function, depending on the type of 
discretisation and on the number of degrees of freedom within each ele- 
ment, and  7  , 7  are its spatial derivatives. Zero order continuity 
is generally sufficient for this class of partial differential equations. 
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By insertion of (24) and (26) into (17) , we obtain: 

Fc(M> " 2 

A  -  // 
mn   IJ 

B  -/ 

mn Mm Mn      pn slp Mn   n In 
m p 

h(7  7 xm xn 

2p  2n 

2        -] 
+ 7   7  )-— 7  7 ym yn    g 'm n ds 

; E -/ n /„ hi.d,  da 
2 2n 

M2 

(27) 

(28) 

The summation with index m includes all finite elements which involve 
node n, and the summation with index p includes all nodes located on the 

boundary C - , whenever node n is itself located on this boundary. The 
term E , as well, is involved only in the latter situation, 

n 

From the previous results, we obtain for the coefficients B  and E : 
pn     n 

B      2"kR2h0 
pn = ~~s7— 

t P (kR,) cos m (0 -9 ) m m  2 p n 

(29) 

E - 4a0h0 
(x)    cos m   (<*-0n) 

m=0 

The conditions (20) then lead to the system of linear equations with N 
complex unknowns £. : 

m  mn  1m  p 
— u   t   - — E 
p  pn slp      n 

1,2. ..N (30) 

The matrix of this system has a banded structure and symmetric coeffi- 

cients, as can be seen from (28) for A  and (29) for B  . Moreover, all 

nodes which do not belong to the boundary C}„ are associated with real 
coefficients. Substantial savings in core memory requirements and in 

computer time are obtained by taking account of these properties in the 
implementation of the method. 

SOLUTION FOR A SHORE-CONNECTED HARBOUR 

In the case of a shore-connected harbour, with a rectilinear coastline 
bounding D„, f  is an even function of 6, which can be represented by 
(21) with only cosine terms present. The same method then gives: 

N9H 2  m 

9     = xn/N 

hp *p   C°S emp  "  2a0(i)    — JmCkV   C0S  ma      (3i) 

{?' 
p = 0 or N 

1,2...  N2-l 
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For the reason indicated above, the order N of the finite Fourier series 
should not exceed the value m = N„, assuming that J\_is defined at KL+1 
nodes C--. The formula (31) leads to expressions of £"„ and of its normal 
derivative along C.„ which are similar to (24), with the index p starting 
from zero. 

We thus obtain a system of linear equations similar to (30), with the 
coefficients specified in (28) . The expressions of B  and E derived 
f    nn pnn from (31) are: 

N 
7TVR h q 

B  = -X  X    2 0   * E  P (kR«) cos mft cos m 0 pn     p n  r=—r  2  m m  2'      wp       n 
2  m=° (32) 

N 
Ah S 

E -  0 0 x  2  Em /.vm+1 m „ n  —   n     TT~ (I)    cos ma cos m&„ 
2      m=0  m 

The matrix of this system has the same general properties described for 
the preceding case. 

FLOW AROUND THIN STRUCTURES 

It is possible to account for the singularity of flow around the end of 
thin structures with the same method by introducing subdomains of circular 
shape D„ at the tip, as shown in figure lb- The functional F  then invol^; 
ves additional integral expressions, in terms of N„+l unknown values of f. 
along the boundary C,„ of these subdomains D-: 

r dn„     s2 
^12 (33) 

ff - -*       ,2 _* [ d?5 Fc<r> - //D ^vfl .vh -^fl r^ds + y^   h§^ 

f      aT3 _* 

L13 J 

Since the solution of (3) within D„ should have a finite value at the tip of 
the structure, its series expansion is of the form: 

oo 
f,(r,W =  2  p„ J ,,(kr) cos 2^ (34) 3 3 „  m m/ z        I 

m =0 

where (r,#) is here a local polar coordinate system, with its origin at 
the tip, and its reference axis aligned with the structure centerline, 
and J ,„ is the Bessel function of fractional order m/2. 

m/2 

Along C,.,, f„ and its normal derivative take a form similar to (24). 
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Insertion of this into the last integral of (33) provides additional 
terms in (27) and finally leads to the following system: 

~  mn ^lm  t>  pn Mp "     qn^lq     n     n = 1,2.. .N     (35) 

with: 

D  = /   hfj--     Xn     da 
qn J 3q  3n 

U13 

N 

D  = X X  27rkR3h3  S  c  Q  (kR„) cos f- * cos ? * (36) 
qn   q n —^-5— ~=Q m m   3     2  q    2 n 

Q (u) = J' /9(u)/J ,,(u)        ;  ^ = 2irn/N m       m/ 2. m/1 n       j 

In (35), the summation with index q includes all nodes belonging to the 
boundary C  , whenever node n is itself located on this boundary. The 
additional coefficients D  appearing in the matrix of the system are 
real and symmetric, as can be seen from (36). Thus, the inclusion of 
subdomains, such as D„ , within D. does not require any modification as 
concerns the numerical resolution of the system. 

EXAMPLES OF APPLICATION 

Several examples of application of the method will be given here. The 
first four cases are related to structures and harbours of simple geometry 
in constant water depth, for which results of other numerical methods and 
experimental investigations are available in the literature. The last 
example refers to an actual harbour project study, carried out by Sogreah, 
in which a complex harbour lay-out and a variable water depth are consi- 
dered. 

Wave diffraction by a circular cylinder 

Figure 2a shows the finite element numerical model adopted for the analy- 
sis of the wave diffraction pattern around a cylindrical structure of 
circular shape, of radius R„, subject to a plane incident wave. 

The variation of the calculated relative wave height along the cylinder, 
for different values of the adimensional parameter kRn, is shown in 
figure 3, where it is compared to the analytical solution of Mac Camy and 
Fuchs [7] . The agreement between both methods is satisfactory. 

Figure 4a gives for kR =1, the spatial distribution of the relative wave 
height in the whole domain D-, in the form of level curves. 

Figure 4b gives the corresponding water surface level, at the instant of 
maximum elevation at the most exposed part of the cylinder. In the same 
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Fig. 2  Numerical models for : (a) a vertical circular cylinder, 
(b) a rectangular harbour b/L = 0.2, (c) a partially 
closed square harbour w/b =0.5, (d) a circular harbour 
with 60° opening. 
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LEGEND 

Analytical solution   Mac CAMY a FUCHS 
Hybrid method 50GREAH 

Fig. 3  Wave diffraction by a circular cylinder. 
Wave-height distribution along the structure 
for different values of kR0. 

Fig. 4  Spatial distribution of the amplification 
coefficients (left),   water surface elevation 
and horizontal displacements (right) for kR0 - 1 
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Fig.5       CALCULATION OF SEICHE MOTIONS IN A RECTANGULAR HARBOUR WITH 8/L = 0.2 

LEGEND 

Hybrid  method 
Analytical method 
Experiments 
Analytical method 
Biem 
Experiments 

IPPEN-GOOA 

LEGEND 

Hybrid  method SOGREAH 
Analytical method   ->      „_    „„„„ 
Experiments } IPPEN-GODA 

Fig. 6  Calculation of seiche motions in a partially 
closed square harbour with D/B = 0.5. 
Amplification at back wall. 
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figure are given the direction and length of the major and minor axes of 
the water particle horizontal displacements and hodographs, which are 
generally of elliptical form, as shown by the author in [4] . 

Seiche motions in a rectangular harbour 

The second example is the study of resonant wave oscillations in a shore- 
connected rectangular harbour, with a width to length ratio W/L=0.2, and 
fully open on its narrow side, as shown in figure 2b. This situation was 
studied both experimentally and theoretically by Ippen and Goda |_5] , and 
by Lee [6] , with a ratio W/L=0.193. 

Figure 5 gives the frequency response obtained by these various approaches 
at the back wall of the harbour. The results obtained by the present 
method agree well with Ippen and Goda's and Lee's analytical solutions, 
which take explicitly account of the rectangular shape of the harbour. The 
results obtained by Bettess and Zienkiewicz [2] and by Chen and Mei [3] , 
which are not shown here, also agree with the above results. 

The experimental results and Lee's arbitrary shaped harbour theory, based 
on a boundary integral approach, agree with the other methods for the 
second mode of resonance, but give a noticeably lower amplification factor 
for the first mode. Ippen and Goda suggest that this could be due to 
energy dissipation, since experiments where actually performed with short 
waves of high steepness. It has not been investigated whether a refinement 
of the finite element network would improve the agreement with those 
experimental results. 

Case of a partially closed square harbour 

The case of a square harbour, partially closed by two thin aligned break- 
waters, is given for illustrating the use of circular subdomains T)     around 
the tip of harbour structures, as shown in figure 2c. 

Figure 6 compares the numerical results obtained by the present method 
with Ippen and Goda's analytical solution and with their experimental 
results for an entrance width to harbour lehgth ratio W/L-0.5. The 
agreement between the different methods is very close. 

Case of a circular harbour 

The case of a shore-connected circular harbour with a 60° opening is an 
application involving more complex resonant nodes, which has been investi- 
gated both experimentally and theoretically by Lee [6]. 

Figure 7 gives the frequency response calculated at two different loca- 
tions with the numerical model shown in figure 2d, together with the 
results of Lee's investigation. 

Figure 8 shows the features of the first four resonant modes, which are 
obtained for kR *=0.51, 2.21, 3.43 and 4.09 approximately, with the present 
method. The water surface elevation is indicated by means of level curves, 
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Fig. 7a CALCULATION OF SEICHE MOTIONS IN A CIRCULAR HARBOUR 
WITH A 60° OPENING 

AMPLIFICATION COEFFICIENT AT POINT A   ( r / Ro =0.933- 9 » 45° ) 

LEGEND 

Hybrid method 
Analytical method 
Biem 
Experiments 

SOGREAH 

LEE 

4 kRo 

Fig. 7 b CALCULATION OF SEICHE MOTIONS IN A CIRCULAR HARBOUR 
WITH A 60° OPENING 

AMPLIFICATION COEFFICIENT AT CENTER 0 

LEGEND 

Hybrid method SOGREAH 
Analytical method i 
Biem \    LEE 
Experiments J 
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\ , \ , i , i 
v  jo| -+f-i 

,-'j.Li.i>-ixH-lT«*rl-f-i-ul._ ,. 

kR„ = 0.51 kR0 

3.43 kR„ =4.09 

Fig. 8  Water surface elevation and horizontal displacements 
for the first resonant modes of a circular harbour 
with a 60° opening. 
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corresponding to given percentages of the maximum elevation. The instant 
taken as reference is that of maximum elevation at the point of highest 
amplification. 

The direction and length of the major and minor axes of the horizontal 
water particle displacements and velocities are given on the same figure 
at the centroid of each finite element. The wave motion has essentially 
the character of purely standing waves in a great part of the harbour, 
and the water particles horizontal motion is practically rectilinear and 
oriented in the direction of the local amplitude gradient. This is not 
the case for particles located near the entrance, either within or outside 
the harbour, which have elliptical horizontal trajectories. 

The resonant modes calculated by Lee are similar to the above. From the 
frequency response curve of the mean velocity at the harbour entrance, the 
values of kR- corresponding to resonance where found by Lee, to be 0.50, 
2.18, 3.38 and 3.97. These figures agree to within 3% with these of the 
present model. 

Case of a harbour of complex shape and variable water depth 

Because of accuracy requirements, the maximum size of the finite elements 
should stay below a certain fraction of the local wave length, which 
depends on the type of spatial discretisation and interpolation functions 
used for f.   With triangular elements and linear interpolation, for ins- 
tance, this limit is of the order of 0.1. In the case of a harbour of 
variable water depth, the size of the finite elements will thus be depen- 
dent on the distribution of water depths to be considered. 

Figure 9 is an example of application of the method to a harbour of complex 
shape and bottom topography (from 2 m to 15 m below MSL), with two main 
breakwaters extending offshore to protect the entrance channel. This model 
was set up for the study of the new Damietta Port Project in Egypt. 

Figure 10 shows the frequency response curve obtained for one of the 
reference calculation points, which displays a great number of resonance 
frequencies. An in-depth investigation of each resonant mode was carried 
out on the basis of such results. 

Figure 11 shows the features of one of the resonant modes of this harbour, 
in the form described for the circular harbour, i.e., level curves of 
water surface elevation and major and minor axis length and direction of 
horizontal water motion, 

CONCLUSION 

The present method leads to a system of linear equations, with symmetric 
coefficients, in which the only unknowns are the values of the complex 
function f at nodes distributed within the bounded domain D,, and along 
its boundary. In the other hybrid-element methods a larger system is 
obtained with additional unknowns, which are the Fourier coefficients 
&,    , &L     in Chen and Mei's method, the normal derivatives in Sakait and 
Tsukioka's method, the source strengths in Berkhoff's method, and the 
£", , or velocity potential values, at nodes distributed along infinite 
elements in Bettess and Zienkiewicz's method. 
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Fig. - Numerical model set up for the study of seiche motions in the 
new Damietta industrial harbour (Egypt)» 

Fig. 10 - Frequency response curve at one of the reference nodes of the 
Damietta harbour model 
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The present method is based on the same analytical representation of f 
in the outer domain D„, as in Chen and Mei's approach. However, here an 
explicit formulation of w    , OT  in terms of the incident wave characte- 
ristics and of the unknown values of £.. along C._, is given. This method 
is preferable to the matrix inversion technique used by the above authors. 
Another advantage of the method is .the simplicity of form of the functional 
F (£") involved in (17) and (33), as compared to Chen and Mei's formulation. 

The method, presented here in connection with studies of long wave oscil- 
lations in harbours, can be applied, with only minor changes as concerns 
the treatment of domain D , to the study of wave oscillations in the short 
and intermediate period range. It can also be extended to include energy 
dissipation and partial reflection along the shore and harbour structures. 

The application of the present method to various situations for which 
other theoretical and experimental investigations have been carried out, 
has led to numerical results in good agreement with the above methods. 
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