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ABSTRACT 
Based on the linear non-dispersive  theory,  the reflection of a 

Converging Cylindrical   long wave, of wave length L,  onto a Cylindrical 
shelf, of radius r = a and positive or negative height A    h relative to 
an otherwise flat bottom,  is  study analitically.   It is found that these 
linear approximation agrees well  with the existing non-linear numerical 
solution when the ratio a/L  is large enough.   It  is also found that these 
two-dimensional   reflection process  is  the contrary of the corresponding 
one-dimensional  case,  since the solution of these problem gives a nega- 
tive reflected wave for a positive step and a positive  reflected wave 
for a negative step. 

1. LNXRODUCTION 
In this paper we will discuss the reflection of Cylindrical long 

waves by a submerged Cylindrical shelf of radius r = a. Solving, anali- 
tically the linear nondispersive Cylindrical  wave equation. 

It is known that for infinitesimal  wave on constant depth, water 
motion in long waves  is essentially horizontal ,  implying that the vertj[ 
cal   variation is weak and the pressure is  hydrostatic.   If we consider a 
vertical  fluid columm of base  section dr rde        and height h + n  , whe- 
re h  is the water depth and n    is  the wave amplitude measured from the 
undisturbed    water surface,  the    rate of change of fluid volume in the 
columm is 3n|st rdrde       .   If,  the vertical  variation  in the horizontal 
velocity is  ignored as  is suggested above,  the net rate of volume flux 
into the columm is 

_ v-u  (h+n  )  rdrdo , 

where v denotes the horizontal gradient in polar coordinates 

(3,1 3 ). 
ar r e 

Mass conservation is satisfied, if the two rates are equal,(incompres - 
sible fluid) hence 

3,n + ?• u(h + t,)  0 
3T 
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For waves having a vertical axis of symmetry at all times, the 
above equation can be written as 

nf + 1 (( h + n) r uL = 0, (2) 
L  r r 

where u is the radial velocity considered constant in the entire depth. 
In terms of the velocity potential, inviscid and icrotational flow, we 
have, that the linear version of equation (2) is 

n
t 

+ ll (>" *r)r = 0 . 
r (3) 

In the momentum balance, we only consider horizontal components 
and neglect convective inertia (non-linear term), therefore 

flt= - 1  vp, 
P (4) 

Assuming now, that the pressure is hydrostatic, 

p = p (n-z)g, 

The momentum equation becomes 

u = - g vn . 
1 (5) 

Introducing the velocity potential into equation (5), we obtain 

n = - 1_ a*_ . (6) 
9 3t 

Substituting equation (6) into equation (3), we have 
2    2 

I  3* = 3_* + 1 a* , ,,. 
c
2 *td      3r2  r" 3> \'l 

The above equation j_s the linear nondispersive Cylindrical wave equa - 
tion, where C = *gh is the shallow water phase velocity. 

Chwang and Wu (1976) investigated the reflection and transmission 
of a converging cylindrical solitary wave due to a circular step of - 
positive height Ah and radius r = a, based on a numerical solution of 
the three dimensional Boussinesq equation (non-linear theory). Their 
main conclusion was that after incident wave reaches the circular step, 
the leading reflected wave takes the form of a negative wave propaga - 
ting in the positive "r" direction (see figure (1)). Wu (1979) presen - 
ted a comparative numerical study of the above problem, using different 
theories of wave propagation. From Wu's work, it is possible to conclu- 
de that when a/L is large enough, where L is the wave length, the re - 
fleeted waves predicted by the Boussinesq theory and the linear nondis- 
persive long wave model are in good agreement (compare figure 2 with fi_ 
gure 1), just as the transmited waves predicted by the mentioned theo - 
ries are differents, result that can be more appreciated when the waves 
approach the origin (focusing process). A non-linear analytic solution 
of this focusing process has been presented by Chwang and Power (1981), 
based on the inner-outer expansions technique to the Cylindrical Boussj^ 
nesq equation. 
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The solution of such a problem in one dimension (reflexion of a 
planar wave due to abrupt change in the water depth) is extremely easy, 
owing to the simple general integral of the one-dimensional wave equa- 
tion. As it is known in one dimension we have the deviations from the 
mean water level as 

(8) n = f(t + x - x0 ) . 

foi - thi a incident wave, 

n = cl" C2 f f 
'  cl+ c2 

for the reflected wave. and 

x+x„ ) 

c 2 

2 cl _  f (t+ fl 

"cf+c'2" " c 

(9) 

(10) 

for the transmitted wave, where the incident .transmitted and reflected 
waves have the same shapes, and for (Ci = ' ght) > (C2 = >/9h2) 

tne 

reflected wave takes the form of a positive wave propagating through in 
finity. The above conclusion for one dimensional wave is totally diffe- 
rent from the one found by Chwang and Wu numerical solution for a two 
dimensional wave. 

2. CYLINDRICAL LONG WAVES IN WATER OF CONSTANT DEPTH 
In these section we are interested in studing the propagation 

of cylindrical incoming long waves in water of constant depth, whose 
maximum wave amplitude is located at r = ro, sufficiently far from the 
origin when t = 0. To do it, we will follow Lamb(1902) original paper, 
'on wave propagation in two dimensions" and Whithan (1974). 

To find a general solution for incoming waves of equation 7, 
we can use two different approaches, one consist on.a Fourier superp£ 
sition of the periodic incoming solution of equation 7 and the other 
technic consists on a uniform line distribution on the z axis, of 
three-dimensional point wave sources ,the total disturbance from this 
line distribution is clearly a function Only of the distance r from 
the 2 axis and the time t. 

The wave equation in spherical coordinates reduces to 

I   A = aj> + 2 a* , (11) 

c2  at2"  SR7  R si? 

when R = "r^z^      .  The source solution of the above equation producing 
incoming wave whose maximum wave amplitude is located at R = r  ,  is 

* = - __1_   f(t +J^_ra )• (12) 
4TTR C 
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The total  potential  produced by a line distribution of the ab£ 
ve source is 

* (r-ro. t) = -    1    /      1' (t+Rcro) dz  . 
~c 4~1T _ „ K c (13) 

Let z = r senh u, therefore R = r cosh u, and substituting this chan- 
ge of variable in equation (13), we obtain 

1 / f(t- rn + r cosh u) du. 
2„ °    ^  r 

(14) 

To verify that the above equation is a solution of equation (7), subject 
to certain condition, let us substitute equation (14) into equation (7). 
Then 

2T,
'
C
 (» + 1 *„ tt = /"(cosh u f (E)+ £ cosh u f U) 

- f"(e))du 

- r   cz  / f(E)du 

= c (senhu f (5))""" (15) 



234 COASTAL ENGINEERING—1982 

•where  C=   (t-rQ /c+(r/c)cosh u   ) .   Equation   (15)   is  identically equal 
to zero,  therefore  (14)  is a  solution of (7),  if and only if f   tends    to 
zero faster than senh u tends to  infinit    when u tends to infinite.  Then 
under the above condition, equation  (14)  is a  two-dimensional  source    of 
strength f  (t - r0/c),    producing cylindrical   incoming waves, whose maxj_ 
mum wave amplitude is located at r = r    when t = 0.  Since 

2n  r*    =  -  r    1 f   (c)  cosh u du  =  -  r 7 (senh u + e~U)f  (c)du 
Co Co 

= -  ( 7   i   f(Odu + r / e
_u f'( 5)du) 0    au c o 

= f(t-rQ/c+ r/c)  -  r 7    e"u f  ( f, )du  ( 

c    ° 

(   16  ) 

Therefore, the following limit gives the source strength 

lim 2n r* = f(t-r /c), (17) 

r ^o 

or in other    words we have a  two dimensional   source of strength f(t'), 
where t'  = t - r0/c, whose initiation time is  t'  = - r0/c. 

The corresponding wave profile to the above two-dimensional  po 
tential   is found by substituting equation  (14)  into equation  (6).  Then 

n (r-rn.t)  =    !  / f'{t-r0/c + r cosh u)du, 
c~° 2ng o c (18) 

Now at t = o we have 

n(r-r0,o)= 1_ /    f  (r cosh u-r0)  du. (ig) 
" c 2irg    °        c 7- 

Therefore,  the problem is  reduced to solving the above inte   - 
gral  equation of the first kind when  the initial  wave profile, 

nftr- r0)/c,o)= ni((r-r0)/c),is  known. 

The solution of equation (19)  is 

f'(  r cosh u  -  r0  )= -4g r cosh u 7 n-(r coshu cosh v- ro)dv, 
C C" C" o       1   c c~ 

(20) 

provided that  n-j  ( »   )= 0 

To prove equation  (20),   let's  substitute equation   (20)   into 
equation  (19) 
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nn   (r-r0)= -  2 /° " coshu/°   n4 (»~ cosh u cosh v  -r0  'dv du        (  21  ) 
"c~-       7   ° c °    1 - -r 

Let z =   r     /c cosh u cosh v and y =  r/c cosh u  senh v 
so that J  (u, v)  =  (  r/c)'    senh u cosh u 
transforming  the a and v  independent variables  in the double  integral 
of equation  (21) to z and y variables,  then we have 

2.,   ,   12,1/2 
(z'-(r/cn 

ni (z-ro/c) 

U2"y2-r2/c2)1/Z 

ni (( r-r0)/c)=-2 /  /Q nj(z-ro/c)    dy dz 

,2_.2,„2,l/2 
(z'-r'/c') 

_^  )) dz = -2 ?  n'i (z-ro/c)(serf *(   c  

r r/c (72-r2/c2)T72 ° 

= -/, n'-j(z-ro/c)dz 

=ni (L-Zo), ( 22) 
c 

Since n^ (") = 0, and equation (20) has being proved . 

3. THE REFLECTION OF _A_ jOLITAKY-M_y!. 
Consider a single cylindrical wave moving through the origin 

in water of constant depth h4. Due to a discontinuous change in the depth 
by a Cylindrical shelf of depth h? and radius r = a, some of the inco - 
ming energy is transmitted beyond the step and the remaining part is re 
fleeted backwards. Let the incident wave be 

n, = / g(t- ro + r cosh u ) du (23) 
J Cj  ci 

with C-)  =      V g h]   the wave celerity in the region r> a,   In this region, 
r > a, besides the incident wave there must be a reflected wave propa - 
gating through infinity that we may choose it to be 

nr= i R^ +  cAl  " I   cosh u  ) du   . 
cj (24) 

In a  similar way,  in the region r  £   a we have a  transmitted wave propa 
pating through the origin with wave celerity C9 =      /ghl that we may 
write it as i <• 
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nt- /T(t- rt/c2 + r cosh u ) du. 
1    ° c2 (") 

The function g is known and R and T at r = a are to be found from the 
matching of the pressure and volume flux at the edge of the cylinder 
r = a, as is usually done. Then, we have 

n,1" n = nt I  r  t 

hi 1 (*T + * )= h2 i *  , a t 
dr 3r 

(26) 

In this way, we get 

R(t+ rr/cr a^ cosh u ) = ci- c2 g (t-r0/ca+ a/cj cosh u ), (27) 

and cit c2 

T(t-rt/c2 + a/C2 cosh u) = 2Cj   g(t-r0 + a cosh u ) .     (28) 

c\ +c2 ci  cl 

The prolongation of the relation (27) in the region r > a, can be given 
by 

R (t+rr/ci- r cosh u ) = cx-c2 g(t-ro -(>j^a) cosh u ).   (29) 
C1     "^ITcT C1     ci 

Substituting equation (19) into equation (24) for the reflected wave. 
We get 

nr = Cl-C2 !  g(t-ro -(r-2a) cosh u ) du , (30) 

C1+C2 °    cT  cl 

The above relation is not a solution of the cylindrical wave equation, 
as can be seen by substituting the following potential 

* = I  f(t-(rHr') cosh u) du (31) 
c 

into the cylindrical wave operator.Since 

<c2 ( £z~+  ~  "If ] - 4*] C f  (t " {LT^ coshu) du = 

i ' " ' 2 
/"    ( -£- f    (  t -  f^—-*1)  coshu) coshu  - f    (  t -  (-r " r )  coshu)senhu) 
ore c 

r2 _ ,2 
du C TT7   C C"    aT?   < f < * - f11^-) coshu))) du - —5L- 

(r - r')2     ° dud C (r - r') 

J^_ ;- f'   (t .(L_T..-r-)  Coshu)  coshu du 
r        o c 
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r - r')        r 

C2 

(   t -    -J-—"—t' coshu) coshu/c du 
c 

f    0 for 0 < r > », (32) 
( r - r ) 

where we used the condition that f tends to zero as u tends to infinj_ 
te. Therefore, these standard technique does not bring a solution of 
the reflection of a general cylindrical long wave. The way around this 
difficulty is a Fourier superposition of the reflection of a cylindri- 
cal periodic wave , where the above technique gives the following solu 
tion for the reflection and transmition of the incident periodic waves 

nI = H  Ho (y)^ 
propagating through the origin, as: ' 

n iwt 
nr= AjR (w) H< (kir)e {34) 

for the reflected wave and 

nt= A    T(w)  H^  (k2r)  eiwt 

11 °      i (35) 

for the transmitted wave.  The function R(w)  and T(w), reflection and 
transmission coefficient respectively, are determined by the matching 
condition at r = a, and are found to be 

R(w)=  (H}(kia)Hp(k2a)- VH^    Hl0  (kja)  H](k2a))/ 

*i 
(HJjUiajHJdCj.a)  y"TT2  - H2(kia)   HJ(k2a)) 

>  I,. (36) 

and 

T(w)=  (Hj(Kja)+ R(w)  H2  (kja))/  H^a), (37) 

where K-j - w/ N/gh1 and k? = w/ J~gfi? and w is the wave frecuency. 
Therefore, the above equations give the dependency of the reflection 
and transmission coefficients with the wave frecuency. 

By a  Fourier superposition of the above problem, we have that an 
incident wave 

n,= 7   Aj(w)  Hj(kir)eiwt dw. (38) 
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will  be reflected and transmitted as 

and 

nr= /    Aj(w)  R(w) ti20 (k1r)e•
t dw (39) 

nt= 7    Aj(w) T(w)  HlQ   (k2r)   elwt dw. 
(40) 

Then, the incident, reflect and transmitted waves have differents sha- 
pes. Because the Fourier coefficients of the above integrals are diffe 
rent functions of w, this is a new property characteristic of the three 
dimensional effect of the fluid motion (planar waves are reflected and 
transmitted with the same shape as the incident waves). 

The above technique leads to integrals that must be solved nume 
rically. For this reason in the remaing of the section we will present 
the following approximate asymptotic analysis of this problem. To doit 
we will look first for the reflection of a spherical wave due to the - 
presence of a sphere of radius R = a of different density to that of - 
the medium in which  the incident wave is propagating. 

For an incident wave potential 

- 1      f(t + R-j-o  ) 
4ffl ci "" (41) 

Whose maximum is at R = rQ when t = o, we will have a reflected wave po 
tential 
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•    = -    1    Y   (t-    R-rr  ), (42) 
r 4irR   

cl 

whose maximum is at R = r     when t = 0, and a transmitted potential 

*t=  -      1 _ h(t+ R-rt  ), '43' 
4TTR C2' 

whose maximum is at R = r when t = 0. where rr and rt are to be found 
later. 

The functions yand h at R = a are determined by the matching - 
condition at the surface of the sphere of  radius R =a. From the flux 
condition, we have 

(»,+ * ) = 3 «>    at R=a 1  i"'  ,,}-  t 

(44) 

3R  '  r   3lT 

1_( f (t + a_-_ro) - Y (t-a-rv ))- 1 (f (t+a-r0)- Y (t-a-rr)) 
a     Cj       -cj    c2     cT-     -q- 

= 1_ h ( t+a-rt )- 1 h' ( t + a-rt ), 
a     -cy   c2       -C7- 

If a is large enough, the above equation simplies to 

l_  (f'(t+a-r0)- y'(t-a-rr )) =1 h1 (t+a-rt), (45) 
ci    ci       -cy-    c?_     --y- 

and from the pressure condition, we get 

3 (*,+ • )= 3 »t  at R=a 
9t  l      r      3t l 

f'(t+arr0)+ Y'(t-a-rr)  = h'(  t+a-_rt)> 

by combination of equation  (45) and  (46), we obtain 

h1 (t+a-rt   )= JLC2_f'   (t+a-rQ) (47) 
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and 

Y'(t-aIrr)=    - (q  - c2)  f   (t+ a-r0). 
cl cT"+T^ -q- {W> 

The prolongation of equation   (47)  and   (48)   in the region R •=   a 
and R *  a  respectively can be given by 

h'(.t+R-rt  ) =    2 Z^_ f   (t+ R + a - a - r0)   . (49) 
c2 cl+c2 c2    c~l    c2    ^T 

Therefore r\  = a + C„  (r    - a)/C,   , and 

Y'   (t-R-r>_)  = -  (  ci_-  c2  )  f   (t-  R + 2a  -  ro_ ), (50) 
"^l" cy + c"2 ci    cj      ci 

Where r    = -  (r    - 2a), and a is sufficiently large compared to the wave 
lenght.r ° 

By a superposition of infinite sources on the z axis, line sour- 
ces,as the ones given by equations (41) and (42), with the relation bet 
ween y and f given by  (50), we will   have an outgoing wave 

n- = -^L. ( cl  " c2  ) 7 f'(t-(ro -2fl)- r    cosh u  )du 
c~f+~c~ 2„g  ----——  0     "ci   ci (51) 

That will be the approximate reflected wave, from a cylinder of radius 
r = a, of the incident wave 

ni= 1  7 f' (t-r0 + r cosh u ) du. (c?\ 
' 2*9 °     cf  ci {^> 

Since in the integration that we have to do in order to get the ref1e£ 
ted wave given by (51), the integrand is proportional to 1/R and there 
fore the mayor contribution comes from the sources near the origin,whe 
re the waves generated by that sources are the reflected waves by a - 
surface almost cylindrical of radius r = a of the corresponding spheri. 
cal incoming waves, the above approximation tends to the exact solution 
when the radius r goes to infinite (see the definition sketch given be 
low). 
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Using the equation(20)  of section 2, we get that f   in the above 
equation is a function of the initial   incoming wave profile, given by 

f'(r cosh u-rp_)=-4gr    cosh u 7 n.   (r cosh u cosh v-r0)dv 
cl ci Cj ° cl cl ci 

(53) 

f'(-r  cosh u~ (rQ-2a )) = 4g r cosh.u 7    nj (- r cosh u cosh v 
cl cT~       cl      o      cj 

r-,  / 

(54) 

Therefore, when we have an initial   incoming wave profile 
%  r - r 

a large r, by 
"   (  r - rnj/C, , t = 0),  the reflected wave can be approximated, for 

n = 2 (c- c2 ) / 
TT   ~   O 

cj+ C2 
(t-r cosh u) / n'. ((t-r cosh u ) cosh v 

cl       °     cl 

- ( r0-2a )) dv du. 
~cl"- 

(55) 
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In particular a  solitary wave, free of discontinuities, can be 
obtained if Lamb's   (1902)  source strength  is assumed as 

f(t')= r/{t' + T'   ) with    t' = t-  (rarga). (5g, 

where t  is a parameter, the function f (t') has no definite beginning 
or ending, but the range of time within which it is sensible can be ma 
de as small as we please by diminishing T . With the above source 
strength, the asymptotic form of the reflected wave is 

3/2 
1 sen ( ii - S ) cos s, 

where 

4V2   cl f c2  '  r  9T      q 2 

S= tani_1( 1_ ( t- r0-2a- r )). (57) 

ci cl 

Equation (57) is plotted in figure 3 for the case C, > C„, consis^ 
ting of a negative main wave followed by a longer positive smafl tail, 
and it is in agreement with the numerical solutions for both cases 
C, S  C?, where for a positive shelf, C, > C,, the reflected wave is ne 
gative and for a negative shelf, C„ > C. , the reflected wave is positT 
ve (see figures 1, 2 and 4). 
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