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ABSTRACT 

The concept of mass transport is theoretically discussed 
within the framework provided by Vocoidal theory.  The 
Lagrangian mass transport is divided into two parts; 
firstly treating the fluid as being inviscid and secondly, 
incorporating viscosity by means of the free surface and 
bottom boundaries.  Eulerian mass transport is defined and 
is shown to correspond, in deep water, to the net flow 
predicted by Stokes and others. 

INTRODUCTION 

The Lagrangian mass transport is defined as the mean 
velocity of a marked particle and results from the fact 
that the trajectories of the fluid particles under finite 
amplitude waves are not closed.  Since the original dis- 
cussion by Stokes (1847), this concept remained theore- 
tically untouched until 1953 when Longuet-Higgins treated 
it from the point of view of a viscous fluid.  Since then 
many authors, of which Huang (1970) is the most notable, 
have written on this subject.  Eulerian mass transport has 
only relatively recently been defined in papers by 
Dalrymple (1976) and Tsuchiya and Yasuda (1981). 

Experimentally the effect was observed as early as 1878 by 
Caliqny, the US Beach Erosion Board (1941) and Bagnold 
(1947).  The most comprehensive observations were carried 
out by Russell and Osorio (1957), whose results confirmed 
the Longuet-Higgins model.  In 1980 Tsuchiya, Yasuda and 
Yamashita observed drift profiles in a flume incorporating 
a natural water recirculation process.  Results from these 
tests agreed with both their and the Stokes drift profiles, 
the net drift being forward throughout the fluid. 

VOCOIDAL THEORY 

Vocoidal theory was developed to predict the behaviour of 
non-breaking waves on a horizontal bed (Swart, 1978) and 
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applies to water of all depths.  The theory is two-dimen- 
sional and is based on the equations of motion and conti- 
nuity and adheres to the bed and free surface boundary 
conditions.  The assumptions on which this theory is based 
can be summarised by the following three definitions. 

Wave profile:   n/H = {(cos 2( itX) )P - n*t} (1) 

Wave celerity:  c2/gd = tanh (Nkd)/kd (2) 

Horizontal orbital velocity: 

u/c = TiM(X)kcosh(M(X)kz )/sinh[M(X)k(d+ii) ] (3) 

where x = (x-ct)/X; z = vertical coordinate (defined from 
the bed upwards); H = wave height; A = wave length; k = 
wave number (2n/X); n*t is the dimensionless trough ele- 
vation and where P, N and M(X) are parameters depending on 
the wave conditions (H/d, V<3) . 

In deep water, when H/d and V<3 are small, Vocoidal 
theory reverts to Airy wave theory while in shallow water 
it becomes solitary wave-like.  Curve-fitting techniques 
were used to allow the use of these numerically determined 
parameters in a predictive manner for an extensive range of 
"/d and V<3 values. 

Because of an approximation to M(X) during the curve- 
fitting process, a vorticity was introduced, that is, the 
theory is rotational whereas in principle it should have 
been irrotational.  The vocoidal vorticity is defined by 
the equation u = V2<K where 4> = -ot) sinh (M(X)kz)/ 
sinh [M(X)k(d+ri) ] is the vocoidal stream function. 

In order to determine to what extent the theory is rota- 
tional the induced vorticity was compared with the vor- 
ticity generated by the straining in the irrotational 
motion (Phillips, 1966) and by the laminar bed boundary 
layer.  The argument on which this comparison is based is 
that the dissipation of energy in a wave is accompanied by 
a decrease in wave momentum which, as Longuet-Higgins 
(1969) showed, is distributed throughout the fluid.  This 
decrease in mean momentum must be accompanied by a mean 
stress across horizontal planes below the surface.  A mean 
second order viscous stress is set up to balance this loss 
of momentum.  Thus a mean second-order vorticity 10 is 
generated below the free surface. 

Comparisons of the average vorticity for various wave 
conditions are given in Table I, which shows that the 
average vorticity generated by Vocoidal theory is generally 
much less than that generated by the viscous and bed shear 
forces.  Since the latter effects are regarded as 
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negligible in most wave theories Vocoidal theory can be 
regarded as essentially irrotational to second order. 

MASS TRANSPORT 

The treatment of mass transport by Vocoidal theory will be 
divided into three parts: the first dealing with the 
Lagrangian mass transport in an inviscid fluid, the second 
with the Lagrangian mass transport incorporating viscous 
and boundary layer effects, while the third part will deal 
with Eulerian mass transport. 

(i)  Lagrangian Mass Transport in an Inviscid Fluid 

The mass transport in an inviscid fluid will be treated in 
a general manner. 

The horizontal orbital excursion or displacement £x is 
d£x(t) 

defined by —T:— = Ue(x,y,z,t), where Ue(x,y,z,t) is 

the horizontal velocity following the particle's path. 
Based on this definition the mass transport can be defined 
as: 

1 T 

"m = jp / Ue(x,y,z,t)dt (4) 
o 

For progressive waves of a permanent type the streamlines 
and particle paths coincide.  Thus once the elevation of a 
specific streamline <|>° is known, the particle Lagrangian 
velocity along this streamline can be obtained from 
UE(x,t) = U(x,zgT>, the Eulerian velocity at position 
(X,ZST)» where zgTr the streamline elevation, is 
obtained by iteration of the expression: 

ZST ~   a     +  S(ZST)   and where the 

function S depends on the particular wave theory involved. 

The mass transport is thus numerically obtained from the 
expression: 

n n 
"m(ZST) =  I U(Xi,zST)Ati/ I   Ati, (5) 

i=1 i=1 

where the time interval Ati is defined as Ati = 
Axi(ui-c) and where n is such than n.AX^ = x. 
Results obtained by this method are similar to those of 

Stokes, namely, forward at the free surface and backward 
near the bed. 
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TABLE I:  THE RATIO OF THE VOCOIDAL VORTICITY TO VORTICITY 
GENERATED BY THE LAMINAR BED BOUNDARY LAYER AND 
FROM THE STRAINING IRROTATIONAL MOTION 

H/d 

1 .0 

2.0 

5.0 

10.0 

20.0 

40.0 

60.0 

0.01 0.02 

0.0066 

0.0482 

0.0035 

0.0003 

0.0032 

0.0032 

0.0032 

0.05 

0.0443 

0.0029 

0.0003 

0.0027 

0.0029 

0.0030 

0.1 

0.0027 

0.0016 

0.0027 

0.0030 

0.0030 

0.2 

0.0025 

0.0012 

0.0028 

0.0033 

0.0034 

0.5 

0.0015 

0.0003 

0.0019 

0.0020 

0.0025 

1 .0 

0.0004 

0.0006 

0.0006 

TABLE   II:      VALUES   FOR  THE   NON-DIMENSIONALISED   EULERIAN   MASS 
FLOW   qra/(H

2g/8c) 

^X       H/d 

Tc        \. 
0.01 0.02 0.05 0.1 0.2 0.5 1.0 

1.0 1.000 1 .000 

2.0 1 .000 1.000 0.999 

5.0 0.993 0.993 0.996 1.000 1 .009 1 .026 

10.0 1 .031 1 .033 1 .040 1 .074 1 .093 1 .039 

20.0 0.988 1 .038 1 .008 0.881 0.708 0.487 0.616 

40.0 1.039 0.905 0.654 0.492 0.363 0.253 0.328 

60.0 0.870 0.671 0.458 0.336 0.247 0.179 0.166 

* Comment: = T /g/d 
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(ii)  Lagrangian Mass Transport in a Viscous Fluid 

To incorporate the effects of viscosity within the 
framework of Vocoidal theory an approach similar to that 
given by Johns (1970) and Isaacson (1976) was used.  The 
bottom boundary layer will be dealt with in some detail. 

The horizontal flow velocity outside the bottom boundary is 
expanded in a Fourier series: 

-     ik"X 
U = I       Ane (6) 

0; A_n = An; kn = 2im/X and X = x-ct. 
Applying the usual boundary layer approximations we have 
that the motion within the bottom boundary layer is 
described by: 

ut + uux + wuz = Ut + UUX + v[K(z) uz]z (7) 

where u is the boundary layer velocity, u is the velocity 
above the boundary layer and K(z), the eddy coefficient. 

Expanding the boundary layer velocity u by the method of 
successive approximations (Schlichting, 1968) the equation 
above reduces to the following two equations: 

First-order:  uit = Ut + V[K(Z)UI2]Z (8) 

Second-order:  U2t + uiuix + wjuiz = UUX + v[K(z)U2z]z  (9) 

Introduce a non-dimensional vertical coordinate r\,   where ti 
= •( a/2 v) z with cr = 2n/T; T = wave period; v = kinematic 
viscosity coefficient and assume laminar flow, K(z) = 1. 
Further, assuming the first-order boundary layer velocity 
to be given by: 

"1 =  I  An[l-F(nn) ]e
iknX, (10) 

n=-«> 

it is found after substitution that the function F(ti) must 
satisfy the equation: 

d F1T') + 2iF(T)) =0 (11 ) 
dn 

with boundary conditions F(0) = 1 and F(») = 0. 

Substitution into the second approximation, where the 
vertical velocity component wx is obtained from the 
continuity equation, and extracting only the real time - 
independent second-order term, results in an expression for 
U2, given by: 
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H2 = l    tR  Ira(G(T)n) ) (12) 
n = 1 

Im(G(Ti)) is the imaginary part of G(ri), with G( TI) 
satisfying the equation: 

1^> . |F(tl)|2 - 2Re(F(r,)) + ^> / (1-F(r,))d, 

subject to the boundary condition G(0) = 0 and G(TI) finite 
as t) * » (* implies the complex conjugate). 

Substituting Uj and u2 into second-order mass transport 
velocity, defined by Longuet-Higgins (1953), namely, 

(13) 

gives an equation for the transport above the bottom 
boundary layer as: 

oo    2 

»i=  I T Im(H(»)) (14) 
n=1 c 

with 

H(n) = G(TI) + -|[|^* / (1-F(n) )dn-1 + 2Re(F(n) )-|F(n)|2] 
o 

Generalising the results of Huang (1970) to include both 
the free surface and interior regions, the mass transport 
throughout the fluid can be calculated.  These results, 
however, depend on an important approximation, namely that 
the series solution be arbitrary but finite.  If a zero net 
mass transport is assumed then the mass transport in the 
interior can be calculated from the expression: 

m   2 
1  r An "n^n  r 3 r       2i sinh 2knd Um = * J, iTnTT^d f2 cosh 2 k"d^ - 7 [1-d-^)2] ~^a— 

+ | (1-n)2 - |} (15) 

with p.  = z/d and the bed defined at n = 0 (that is, z = 0). 

Calculations have shown that m need not exceed 50, even for 
the most highly non-linear case.  Figures 1 to 4 show 
typical mass transport profiles for various values of Tc 
(= T /(g/d)) and H/d.  For low values of Tc and 

H/d 
(Figure 1) we see that, with the exception of Longuet- 
Higgins, all profiles correspond to that given by Stokes. 
It should be noted that in order to distinguish between the 
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0.00 0.04 0.08 

Urn /SORT   (GD) 

Figure 1   Comparison of the theoretical non-dimensional 
drift profiles for various wave theories 
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TC    = 4.38 
H/D = 0.23 
THEORY SYMBOL 

VOCOIDAL X 

HUANG * 
L-H X 

STOKES o 
V WAVES X 

0-02 0.04 0.06 

Um / SORT  (GO) 

Figure   2 Comparison of the theoretical non-dimensional 
drift profiles for various wave theories 
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fc   = 7.98 
/H/D  = 0.29 

THEORY SYMBOL 

VOCOIDAL X 

HUANG * 
L-H X 

STOKES © 

V WAVES * 

o.oo o.oe o.i6 

Um/SORT (GD) *I0' 

Figure  3 Comparison  of  the  theoretical  non-dimensional 
drift  profiles, for  various  wave  theories 



MASS TRANSPORT 337 

TC     = 12.69 
H/D   = 0-26 
THEORY SYMBOL 

VOCOIDAL X 

HUANG * 
L- H X 

STOKES o 
V  WAVES X 

0.00 0.05 0.10 

Um/SORT (GD) *I0' 

Figure   4 Comparison of the theoretical non-dimensional 
drift profiles for various wave theories 
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Stokes mass transport and the Vocoidal inviscid Lagrangian 
transport (V wave) the Stokes solution was not corrected 
for zero net mass transport.  In order to do this a 
quantity -Ho coth kd/8d must be added to the Stokes 
results, thus shifting the profile to the left. 

In the deep water region (Figures 1, 2 and 3) the mass 
transport velocity above the bottom boundary layer, as 
predicted by Vocoidal theory, is greater or equal to the 
values predicted by Longuet-Higgins and Huang.  As the 
water becomes shallower the opposite is true (Figures 4 and 
5).  This latter result corresponds to the observations 
made by Brebner and Collins (1961).  Figure 5 gives a 
comparison of the theoretical profiles with a data set 
observed by Russell and Osorio (1957). 

(iii)  Eulerian Mass Transport 

The Eulerian mass transport will be determined using 
Dalrymple's (1976) approach and be defined as the net or 
average flow past any fixed point in the fluid: 

T d+r) 
M = | /  / u(z,t)dzdt (16) 

o o 

Dalrymple obtained, for Airy theory, the well-known solu- 
tion M = pgH /8c, while for Dean's stream theory he found 
that M = -p<|»(x,Ti), the value of the stream function on the 
free surface. 

Integrating the continuity equation over depth and applying 
the bed and free surface boundary conditions the net flux 
in Vocoidal theory is determined to within an integration 
constant: 

d+T) 
/  udz - en = qra (17) 
o 

The choice qm = 0 corresponds to a reference frame in 
which the net mass flux is zero (Tsuchiya and Yasuda, 
1981). Assume qm / 0, then in the light of Vocoidal 
theory's second order irrotationality the expression 
relating kinetic energy density to the momentum flux, 
namely, 

X.   n+d      o X   ri+d 
p   /     /   (u2+w2)dzdx   =   cp   /     /  udzdx (1£ 

o 

(Starr, 1947; Longuet-Higgins, 1976) can be used to 
determine qra.  Since qm /     0 the expressions for the 
orbital velocities change so as to include qm.  The 
resulting quadratic expression in qra can be numerically 
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TC    = 13.18 
H/D = 0.23 
THEORY SYMBOL 

VOCOIDAL X 

HUANG A 

L- H X 

STOKES o 
V WAVES X 

DATA + 

0-00      2.00 

Um /a
2 o- k 

Figure 5  Comparison of the theoretical non-dimensional 
drift profiles and data observed by Russell 
and Osorio (1957, Figure 7) 
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solved,   and  values   for  various  wave  conditions  can  be  seen 
in  Table   II.      In   the  deep-water   limit   the   expressions 
involving   qm  reduces   to: 

qra "   qm/cd   =  H2g/8c. 

CONCLUSIONS 

(i)  If viscosity is neglected the Lagrangian mass 
transport corresponds in profile to that given by 
Stokes. 

(ii)  Vocoidal mass transport including viscous effects is 
such that in deep water the velocities above the bed 
are generally greater than those predicted by 
Longuet-Higgins (1953) and Huang (1970) while for 
shallow water the reverse is true. 

(iii)  In deep water both the viscous and inviscid 
solutions coincide and reduce to the Stokes profile. 

(iv)  An Eulerian mass transport can be defined which 
approaches the Stokesian results in deep water but 
diverge as H/d and tyd increase. 
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