
WATERWAVES CALCULATION BY NAVIER-STOKES EQUATIONS 

by 0. DAUBERT , A. HAUGUEL  and J. CAHOUET 

Abstract : N.S.L. program is a finite-difference code for two- 
dimensionnal flows with a free surface in a vertical plane. Basic 
equations are Navier-Stokes Equations with a simple simulation of 
turbulent effects by an eddy viscosity coefficient related to the 
mixing length and the mean velocity gradient. Theses equations are 
solved in a variable domain in time. The main features of the numerical 
method are presented. Some comparisons with theoretical solutions give 
a good validation of the code both in linear and non linear cases. 
Other examples of application are given. 

1. INTRODUCTION 

Large computational programs, solving time-dependant Navier-Stokes 
equations, in two and even three space dimensions, are now well 
developped for industrial design. Their adaptation to waves problems 
should be a new and powerful mean of investigation in theoretical and 
practical studies, because non linear and viscous effects are taken 
into account. 

The N.S.L. program "Navier-Stokes a Surface Libre" presented here, is a 
first step to this ambitious objective. It solves numerically N.S. 
equations in a vertical plane - i.e. only for two-dimensionnal flows - 
with a free surface. The free surface is a moving boundary for the 
computational domain, and is also an unknown of the problem. 
Time-varying pressure and velocity fields are the other results of this 
program for suitable initial and boundary conditions, and any given 
bottom shape. In order to give a more pratical background to the study, 
N.S.L, program can be considered as a "numerical wave flume". It allows 
simulation of all sorts of waves, in deep or in shallow water, with 
small or large amplitude, except perhaps breaking ones. 
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2. MATHEMATICAL FORMULATION 

2.1. General equations : 

In the fluid, velocities and pressure are related by dynamical and 
continuity equations : 

(!) 2X. + IVp* = Div (vTVv) 
Dt  p 

(2) Div V = 0 (p* = p + gz) 

The turbulent viscosity coefficient, is given empirically by 

(3) vT =   V+  K2 I2   (2 Dij.Dij) 

with Dij - 1 (V. , 1 + V., i) 

.4x1/2 

The mixing length 1 is constant in the fluid except near the bottom, 
where 1 is proportionnal to the distance from the bottom. 

2.2. Computational domain and boundary conditions 

They are summarized on figure 1. 

z 
i      .    . .. i 

outlet 

-').<**.=o 

Figure 1 - Boundary conditions - Left b.c. simulates a wave- machine 
(e.g. U = U (z) sinwt) - Right b.c. is absorbing if h is small 

enough to eliminate dispersive phenomena. On the bottom, the second 
b.c. simulates a tangential stress in a boundary layer. 

2.2.1. Sea surface boundary conditions : 

The second relation, shown in figure 1, is a partial differential 
equation which can be used for the free surface determination. It must 
be solved along the whole Q -line, with its own boundary conditions. 
These £-boundary conditions, in x = x. and x = x„ , can be deduced from 
the u-ones, by using the horizontal projection of eq. (1), and the 
surface relation : p* = pg £. 

C4) a£     1 dp*    1 ,Du  _.  , „ ,,     1 Du 
T7 =  71 -fc =   - I (Dt" - DlV (1/TVU)) S " g Dt 
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Theoretically, another boundary condition is required, along the free 
surface, in order to well pose the problem - a zero tangential stress, 
for instance-. But this point is ignored in the present, because 
viscous terms are almost vanishing near the free surface, as long as 
wind effects are not studied. 

2.2.2. Bottom boundary conditions : 

The first one traduces the impermeability of a fixed bottom. The second 
one comes from the idea that the tangential stress 

is prescribed. Its value is calculated by doing the hypothesis that the 
velocity profile, near the bottom, follows a logarithmic law, for 
instance : 

(6) 7.7-^(1 Log 1+8.5) 

where y is the distance from the bottom. 

As v„,  near the bottom, reduces to 

(7) v T ~K
2 y2 av.T 1 an 

one has, by elimination of uA, a relation of the form 

(8) aJp. = ir.7 
On 

2.2.3. Lateral boundary conditions : 

These conditions are fitted to wave flume simulation : the left one 
simulates a wave machine and the right one, allows the waves to get out 
without reflection. The absorbing boundary condition : 

(9) ^+c4ii=0 
o t    OX 

must be used in a shallow water situation. In dispersive waves, the 
celerity c depends on the wave length. It is thus necessary, for 
irregular waves, to reduce the depth with a mild slope, in order to 
have only shallow water waves at the boundary, and then a unique 
celerity c = Vgh. 

3. NUMERICAL METHOD 

3.1 Coordinate transformation 

Before solving numerically the system (1) (2) and its boundary 
conditions, a coordinate transformation is done : 
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(10) •q = H (z - zf(x)/(£ (x,t) - zf(x)) 

This transformation maps the physical variable domain in a fixed one, 

with boundaries parallel to the coordinate-axis (figure 2). 

-z = c u,t) 

Figure 2 - The semi-curvilinear grid, transformed in a rectilinear one 

by the transformation : 77 = H(z-Z,/(£- Z ). 

Equations and boundary conditions are expressed in the new independant 
variables (£.7} , t). 
Calculations are performed on the transformed domain, by solving a 
finite difference approximation of the transformed equations. These 
involve, in each derivative, one of the following factors : 

(11) 7?x = - (H Zfx+   (Cx " Zfx))/(C- Zf) 

(12) 17 z = H/(£- Zf) 

(13) 77 t = -T)C,t/(.t,-  Z£) 

which vary in time (due to the free surface motion) and are evaluated 
at each time step. 

3.2. Algorithm of a time step 

A fractionary step method is used 111 . This method is illustrated by 
the following scheme : 

V {n At) 

i Non linear transport 

Diffusion due to viscous effects 

I Correction to get a zero-divergence field. 
I pressure1*1 

! via        and equilibrium 

V [ (n + 1) At ] 
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Each  time  step  is  splitted  in  three  parts  which  are  solved 
successively ; the velocity field V  = V(nAt), being known at time 
n At,  intermediate  fields  V(l)  and  V(2)  are  computed  verifying 
respectively : 
- a transport equation solved by the Characteristics method. 

(14) V(1) - vn 

At + v « v v 
and a diffusion equation solved by an explicit method 

(15) ;(2) V (1) 

At 
Div (i/T Vv

(1)) 

The definitive, zero-divergence velocity field, at time (n+1) At, V , 
is calculated via a pressure and free surface equilibrium, which is 
expressed by the following system of equations : 

in the domain 

(16) v"+i _V2)     1 „ *            1 
At         +

P V"    "° 

(17) _.     t,n+l      n Div V        =0 

(18) *            i-                                         1 
P    = P%<, 

(19) dC         n+1    d£        n+1 
"3T+U      T^"W 

Elimination of V         between   (16)   and 
pressure 

on the free surface 

(20) 
AP" 'At 

J(2) 

This equation is solved with Neumann boundary conditions, derived from 
the normal projection of equation (16), in which V(n+l).n is known, on 
the bottom and on lateral boundaries. On the free surface, p* verify 
the Dirichlet boundary condition (18). As t is related to V(n+1) by eq. 
(19), the system (16) to (19) is solved iteratively. 
Discretisations, in space and time which are not specified in the 
formulas (14) to (19), are performed in a staggered grid, as shown in 
figure 3. 

O 

U - 
W- 
P- 

nodes 
nodes 
nodes 

 —~ -> h 
Figure 3 - Numerical staggered grid, in space and time. 
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Pressure nodes, on this figure, are drawn on three time levels to 
indicate that, in equation (16),Athe pressure gradient is splitted on 
three time steps ; let us write p without star : 

(21) yp^   aVpn+Y+ £Vpn+{+/Vpn~! 

a + /3 + y = l 

Wheighting coefficients a, j3 , y are choosen as close as possible to 
1/4, 1/2, 1/4 respectively ; nevertheless, a must be slightly greater 
than)', in order to insure the stability of the numerical scheme(A). Of 
course, equation (20) is modified in consequence : 

(22) Ap    ^ _ I Div      _£__ Vv      _/3VP    o.yVP    y 
z  a   L At *      z J 

Pressure fields at (n+1) At and (n-l_) At are assumed to be already 

n+3  2 2 

calculated, and p — is the unknown of this equation. 
2 

It is thus necessary to prescribe, as initial conditions, not only 
velocities, but also pressures at two consecutive time levels. Equation 

(19), involving £ -r, and t, -?, is approximated with a centered discre- 
tisation. 
Simpler methods have been studied, but they have shown a very poor 
accuracy in the tests presented hereafter. 

4, COMPARISONS BETWEEN COMPUTED AND THEORETICAL RESULTS 

N.S.L. program has been tested through numerous comparisons between 
computed and theoretical results, specially in two cases : 

- the Stokes linear wave solution for small amplitude waves, 
- the solitary wave's solution. 

For these comparisons, viscous effects have been neglected. 

4.1. Tests for small amp_litude waves. 

Figure 4 shows the waves calculated in the numerical wave flume, when 
the left boundary condition simulates a piston-wave-machine with period 
4.5 s, and maximum velocity 0.2 m/s ; the right boundary condition is a 
radiative condition. 

Water is at rest, at t = 0 ; then waves begin to propagate from left to 
right with a celerity about 5 m/s. At t = 50 s, five waves have gone 
out by the right boundary ; the movement is considered established ; 
celerity, wave lenght and wave amplitudes can be compared to the 
theoretical values given by the linear first order solution for 
irrotationnal waves of small amplitude. 

(*) This method is a generalization of the one used by HAUGUEL in the 
numerical model of storm waves in shallow water [2] and [3] . 
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Other tests have been done with a pivot-wave-machine, and with 
different depths. Comparisons with theoretical values are summarized in 
table I : the last case presented in this table, corresponds to figure 
4 ; 

Pressure lines Velocity field 

t  =  5 

^w  

V^N*--   -v---' ~v~   --- - 

t  =  50 

'•ill 
nili" K   !liJ   Hi I 

Figure 4 - Waves calculated in the numerical wave flume. 
The left b.c. simulates a piston wave-machine (period = 4.5 s, 

maximum velocity = 0.2 m/s). The right b.c. is a radiative condition. 
(Ax = 1 m ; At = 0.15 s ; Az = 0.25 m in the deep part of the flume) 
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The others are performed in a longer horizontal wave flume ; in these 
cases, results are analyzed before the occurence of perturbations 
comming from reflection on the right boundary. Computed values are very 
similar to theoretical ones, indicated in parenthesis. 

In these tests, the computing time is about 200 s of CPU for 50 s of 
physical time, on a CRAY 1. 

4.2. Solitary wave tests 

One is shown on figure 5 : on the left boundary (x = 0 m), the 
analytical value of the time-varying u-component is imposed ; 
w-component and free-surface level are computed results. The wave 
appears progressively in the domain of calculation, and propagates 
without deformation, like the theoretical solution [3] drawn on the 
same figure. The good quality of this result, insure that non 
linearities are well calculated. 

m 

1100 
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woo 

\ / / \ I / I J \ 

0                 215         m   ** 0                  215          m    «< 0                         2 s         m  ux 

us 

5             m   MO 

T 10 S 

Figure 5 - Free surface of a solitary wave at t = -5 s, 0 s, 5s, 20 s. 
 — Theoretical solution Computed solution by NSL program. 

5. PRESENTATION OF SOME APPLICATIONS 

As an example of the program possibilities, figure 6 shows how the 
solitary wave is transformed when it propagates on a rise. A similar 
case will be studied both numerically and experimentally. The numerical 
model is then able to give informations on the waves deformation by the 
bathymetry and then to test the validity of different integrated wave 
theories. 

Another application, presented on figure 7, is specially devoted to the 
simulation of viscous effects ; it is the calculation of a permanent 
flow over a dredged trench. Drawings show the beginning of the flow : 
free surface remains nearly horizontal, and transient recirculations 
can be seen near the bottom. This flow has been studied experimentally 
in the Delft Hydraulic Laboratory [4], and it will be possible to use 
velocity measurements, in order to fit the parameters occuring in the 
turbulence simulation of the mathematical model : mixing length and 
bottom roughness. In the next future, the model will allow the study of 
viscous effects on propagating waves. 
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10 m 

Figure 6 - Solitary wave propagating on a rise 
Pressure field p  (step = 0.05 m of water). 
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Figure 7 - Flow computation over a dredged trench. Velocity field. 
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N.S.L. program has also been stated to the study of irregular waves. On 
figure 8, the calculated heights in three points of a "numerical wave 
flume" are given. These level variations result from the superposition, 
at the left boundary of velocity profiles corresponding to three 
sinusoidal waves, whose periods are 5 s, 8 s, and 13 s, and height 
0.5 m, respectively. The evolution of the sea surface is quite 
comparable to what is expected in that case, and then, non-linear 
interactions taken into account in the numerical model, seem to be 
properly reproduced. 

As the space and time steps, in this case, are chosen small enough to 
get a good precision for shortest wave (At = 0,15 s, Ax = 1 m, Az = 
0.75 m in the deep part of the flume), calculations need more computing 
time than the previous ones : about 800 s of CPU time in the CRAY 1, 
for 100 s of physical time. But this first test demonstrate the 
possibility to use the model on irregular conditions with a single 
simulation. 

All these applications have ensured us that the idea of "numerical non 
linear wave flume" is viable. Further developments and applications 
will be made to demonstrate this possibility. 

6. CONCLUSION 

The main difficulty to tide over, for a numerical simulation of waves, 
was to get a good accuracy in propagation phenomena. Numerical models 
are often affected by excessive damping or phase-shift errors. The 
cases which have been choosen to test NSL program : - linear cases, as 
the first-order Stokes wave, and non-linear ones, as the solitary wave, 
- have lead to an efficient and accurate numerical method. 

The other aspect to be tested now, are the turbulence and bottom 
boundary layer simulation in wave conditions. 

N.S.L. program appears already to be an interesting tool for various 
fundamental studies, as velocities and pressure distributions in random 
waves, or in waves over immerged obstacles. 

Developments of the code are projected to adapt its possibilities to 
stresses calculations on sharp obstacles and eventually on floating 
bodies in waves. 
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GEOMETRY OF THE 
"NUMERICAL WAVE FLUME' 

1 Probe 1 

"I        v 
I Probe 2 Probe 3 

V2m 

15 m ^__J0%__  

 130 m   j «— 

A 

A 
4  — 110m  J. -60m— i 

Ax = 1m     Az = 0.75 m    At = 0.15s. 

LEVEL VARIATIONS VS . TIME 

Height (m) 

probe 1 

-AVVWVIA probe 2 

probe 3 

Figure 8 - Calculation of irregular waves. 



WATERWAVES CALCULATION 845 

7. REFERENCES 

I lj YANENKO N.N. Methode a pas fractionnaires. Resolution de problemes 
polydimensionnels de physique mathematique. 
Translated by NEPOMIASTCHY P.A. Collection Intersciences A. COLIN - 
Paris  1962 - 

|_2J HAUGUEL A,-A numerical model of storm waves in shallow water. Proc. 
of the 17   Conf, of Coastal Engineering - 1980 - 

I 3] HAUGUEL A. Calcul des houles de tempete en eau peu profonde. 
E.D.F. Rapport E42/79.41 - 1979 - 

[4J ALFRINK B.J. The computation of turbulent recirculating flow using 
curvilinear finite differences. Application of the k - £ model to 
the flow in dredged trenches. E.D.F. report HE/41/81.22 - 1981 - 

8. NOTATIONS 

x horizontal coordinate 

z vertical coordinate 

t time 

V = (u,w) velocity vector 

p pressure (p = p +p gz) 

Z bottom level 

C, free surface level 

V cinematic viscosity 

V- turbulent viscosity 

K Karman's constant (= 0.41) 

Z mixing length 

p volumic mass 

g        gravity constant 

y        distance along 
the normal to 
the bottom 

n»r      normal and 
tangential unit 
vectors 

Div=Divergence = o    P 

dx   d z 

Gradient a    , d  ) 
dx   d z 

A  Laplacian = d__ 
d 

At   time step. 
Ax, Az space steps 

dz2 




