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ABSTRACT

In this paper , the authors paid attention to the non-linear
interaction of two free wave frains crossing in intermediate
water depth. From theoretical approaches , the velocity poten-
tial and water surface elevalion have been expanded to the
second~order by perturbation method. And wave height , velo-
city of fluid particles , pressure distribution , wave thrust and
energy density of the common wave ave also investigated. In
ovder to verify the theovetical vesults , elaborated and numerous
experiments have been performed. Some of the remarkable
coincidence ave obtained and the conclusions have been presented

in this paper.
1 INTRODUCTION :

Concerning the non-linear interaction of the shortcrested
waves has been obtained by Fuchs ( 1952 ) for a second-order
solution. Chappelear ( 1961 ) extended this to third-order in

the same manner using a forvmal power expansion. Hsu & Silve-
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VARIATION CHARACTERISTICS

ster ( 1979 ) have also presented the third-ovder solution which
encompass all angles of incidence and can be extended to the
limits for both standing and stokes waves. Further , the
second-order Eulerian water particle velocities throughout the
bottom boundary layer , mass transport of the first approxima-
tion and the limiting cases of progressive and standing waves
have been obtained by Hsu , Silvester and Tsuchiya ( 1980 ).
A comparision is also made with their available experimental

data.

The above comprehensive progrvam of vesearch on short-
cvested waves are only applicable for the same period and
height of the two component waves. However , for the non-
linear interaction between pairs of intersecting gravity wave
trains of arbitrary wavelength and dirvection on the surface in
deep water has been developed by O. M. Phillips ( 1960 ). And
the conclusion was made that the second-order terms give rise
to Fourier components with wave numbers and frequencies
formed by the sums and differences of those of primary compo-
nents , and the amplitudes of these secondary components is
always bounded in time and small in magnitude. DBut the
thivd-order terms can give rise to tertiary components whose
amplitude grows linearly with lime in a resonant manner as the
interactions arve satisfied to the rvesonance loop. Furthermore
, Longuet -Higgins ( 1962 ) has found that the rate of growth
of the tertiary wave with time is a maximum when 8 = 17° ;
the rvate of growth with horizontal distance is a maximum when
0 = 24° , wheve § denotes the angle between the two primary

wave components.

Based on the approaching method of Longuet -Higgins

(1962 ) , the paper presents the second-order solutions of
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velocity potential and wave profile after two wave trains
crossing in intermediate water depth. Then the watler particle
velocity , pressuve distribution , wave thrust and energy desity
are also investigated. Moreover , the verification of the

experiments has been performed in the laboratory.

2 THEORETICAL APPROACH

Q.

bed

Fig. 1

Let us suppose thal two free wave trains are crossing in
the uniform , impervious intermediate watev depth as shown in
Fig. 1. Since the presence of vorticity is very small , so that
it is permissible to assume the existence of a potential function

@ for the velocity U in an imcompressible non-viscous flow :

thus
U=ve¢ , V=0 e (1)

And let Z be the vertical coordinate , then we have lhe

dynamic condition at the free suv face , as
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g7]+¢;+~;vU2:F(t) at Z=7v  eeeeeeen ©

where F(t) is Bernoulli's constant for linear case , bul the

nonlinear which can be expressed by Longuet-Higgins ( 1953 )

F(t):(%ﬁ)tt+%((v;;¢)2*;) ......... (3)

Here “ — " denotes the average for wave period and

The kinematic condition at the free surface is

7 *¢Z+¢x7]x+¢yvvv =0 at Z =7 eeeeeeees (4)

For notational simplicity that it is belter to denote the
pavtial differentiation by the subscript , ¢. =0¢ /0«
G =02¢ /0t 0z etc. Then taking the material derivative
sy D/Dt , of eq(2) and subtracting g times eq. (4), we obtain

¢,,+g¢z+(U2),+U-V(é—U2):0 AT T ®)

Now let eq. (2) and eq. (5) be expanded in Taylor's series
about Z =10 to give

1 1 1
g7]+[¢t+7]¢tz+57]2¢zzz+"']+[?U2+ﬁ (—ZvUZ)Z.;_...] =Q

at Z=0 e ®)
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{(¢n+g¢z)+ﬂ(¢u+g¢z)z+---}+{ (UB) (U, +--}

+{U-V(%U2)+---}:O at Z=0  eeeeeeen )

Suppose that we define ¢:j , 9:; , Uij and Q;; by the
formal expressions :
= (aP,0+ oo, )+ (%P0 +aBp,, + BZPoz )+ oo
n=(an0+ PN V+ (AZN20 +aBY 1+ BZNos ) Aeeenes
U= ( aUlO +ﬂU01 )+ ( aZUZO +aﬂUu +182U02 )+ “““
Q= (aQ0+PQo; )+ (%@ +aﬂQ11 +‘BZQ()2 D SIS
where a , B are to be small , independent and proportional to

the surface slopes , a¢,o and Bdo, represent the first approxi-

mation of two crossing wave trains. The remaining terms

represent wave interaction. Then substitute eq.(8) in eq.(1),
®, @, that we obtain .
0(a):
V2¢10 =0  eeeeeeess (9)
gM10+t @00 =Qio at Z=0 e (10
Dot +gPro: =0 at Z=0 e a1
Pio: =0 at Z=—d  eeeeeeens 19)

0(a?)
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Vz¢zo =0  eeeseeney (13)
1
g0 20+ Dz0t + 0 10P10:2 +’2“U,20 =Qs0 al Z=0  ceeneeens (14)
Doort +8P20:+ 010 (Prors +8Di0:):+(U%) =0 at Z=0----+- (15)
¢2oz =0 al Z = —d eeeeeenes (15)
0(afB) :
V2¢11 =0  ieeeeeees (17>

gvu‘f‘ﬂbut+7}10¢01tz+ﬂoz¢zotz+Um Up; =@, at 7 =0

......... (18)
¢11tt +ghi1:+N 10 (¢01u+g¢01z)z+ﬂoz (Prote +gDr0:):
+2 (U *Usyd)e =0 at Z =0  eeeeeenes (19)
¢uz:0 at Z =—d = ceeeienes (20)
And the teyms of 0 (B), 0 (B2) ave the same expressions as
0 (a) , 0 (a?) but the subscript of 10 , 20 from eq.(Q)
through eq. 18 will be changed by o1 , 02. 1f we assume
that the water is intermediate for the firvst-and second-ovder
waves that the solutions will be obtained as .
G0 =A; cosh b, (z+d)sine, e @)

1

A
7 10 ZGT cosh k,d COS P, e (22)
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of =gk, tanh k,d

3 k7AZ

¢20 :“gmcoshzkl (Z+d)3”12§01

, ~ kEZA? cosh®k,d (cosh2k,d+2)
2T 4 sinh?k,d

cos 2@,

Do, =Bicoshks; (z+d) sing,

0.8,

coshkzd cos ¢»

Nor =

62 =gk, tanh kod

kiB?

3 .
Goz e oTsinhhad cosh2k, (z+d)sin2¢,

kEZ2B? cosh?kod (cosh?k,d+2)

, = 20,
Moz =75 sinhZk,d cos a9

for convenience , wheve

¢©; =k, x—0,t and ¢, = k,x—0,¢

Combining the solutions of the first-order from eq. (1)

through eq. 20, then ¢,, and 70;; of the nonlinear term will

also be found out.
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G =A, B, kb, [—}-?—’ coshk’ (z+d) sin (¢, +¢, )

3

+% coshk" (z+d)dsin (@, —@2 )] eeeeeee @)

4
F
Ter = A Bokiks {((0,+0:) 2% coshk’d+LG
2 2 1

«cosh (kytks) d~%Hcosh (ks —kydd) cos (@405 )

+((g, -0z )2‘2 coshk"dA%Hcoslz(kl —k,)d

<

LG osh (ki tha YA cos (9)—020) e &
wheve
1, af sinhk.d a? sinhk,d
Fo= 2 ( g, sinhk,d + g, sinhk,d )2 (ait0;)
cos @ 1 . .
( 5 coshk,dcoshk_,d~531nhk,d$mhk2d)
1 g sinhk.d a? sinhk,d
Fe =y O Simhkd o, smhk,d T2 (0 79)
cos o 1. .
( 2 coshk,dcoshkngrEsmhkldsmhkzd)

Fs =(o,+a9:)2coshk’'d—ghk’sinhk'd
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F,=(0,—0:)% coshk"d—gk"sinhk"d

N2
c= (0t 20
0,02 2
2
H= (oitoa)? -251‘%2i
0,0, 2
k/:|1{1+K2’ak":'K1_K2|
0:|01*¢92|

If a;, , a- denotes the amplitude of two primary wave
components rvespectively. Then both of the velocity potential
and water surface elevation function of the second-ovder solu-

tion of the common wave will be given by

(/);alg coshk, (z+d) sin +a2g coshky (z+d) si
~ o, coshk,d L coshkyd mee
3 , cosh2k, (z+d) .
R T i d SIn2¢.t
3 ., cosh2k; (z2+d) . a,8;0,0;
T Tt SR S kdsinhind

. ( ?1 coshk’ (z+d) - sin(@,+¢z)

3

2

coshk” (z+d)sin (@, —¢2 )] e 63

L F
F

4
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afk, _coshkid
4 sinh3k,d

N =a,C05Q; +aA2605P 2 + (cosh2k,d+2)

afk, coshk:d

6‘0329014» 1 m(003h2k2d+2)(3052(ﬁ2
a,8:6,0 ", p
_Gu1%29102 | L h
sinhk,dsinhk,d {(Coi+0:) F; coshk'd+

+%Gcosh(k,+kz )df%Hcosh (ky—k,)d)

Fa

F,

ccos (@, +@)+((a,—02) coshk"d

1
f%Hcosh(kl k) d+pGeosh (ky+h:)d) cos (9,—92)}
......... 4

From above two equations , examples of water surface
elevation after two wave trains crossing are graphed in Fig. 2.
and Fig. 3. In Fig. 2, curve A is the first-order solution of
common wave , curve B is the solution of Stokes wave which
obtained from the fromt of four terms on the left side of eq. B9
, and curve C is the solution of eq. B8, also representing the
condition of short-crested wave , as noted by Hsu et al ( 1979).
In Fig. 3 , the dash-line and solid-line denotes the solution of
Jirst-order and second-ordey respectively , and it is evident
that the period of the common wave is equal to the least

common multiple of the two primary wave components.
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A -----mmm- 18t order
8 —-—- -~ Stokes
C ~————— 2nd order

t

{cm)

Lo

#=45° , a=36¢cm , Ty =Ts=1.0s¢cc I1,=H=5.0cm

(sec)

Fig.2

--------- tst order

2nd order

a=36cm ,T1=0.8sec ,T>=1.0sec Hy;=4.2¢m rH,=5.0cm

Fig.3
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Based on the velocity potential and water surface eleva-
tion funtion , the water particle velocity , pressure distribu-
tion , wave thrust and energy density can also be investigated
as the following form .

(1) water particle velocity .

After two wave trains crvossing , the components of water
particle velocity ( u , v , w ) for the second-order can be
expressed as

U = U COSP;+ U2CO08P, T U3C052¢Q; +Uus¢c052¢Q; +

+M5COS(§01+(DZ)+u5603(§01—~g02) ......... (35)

V= 0,000, V€050, +03€¢082¢0,; +0,4C082¢>+

+v5c08 (P 4@z )Hvsc0s (P, —@z ) eeeeeens )

W= wW;CoSP; tW2¢08Q, +Ws¢€0S2¢; +w,cos2¢,+

Fwscos (@ +@2 Vtwecos (@ —@z ) eeeeeees &)

from the above thvee equations , we have

a0 .
CTPRD) :-s—?n—’hk'l—d(cosﬂlcoshk, (z+d) , sind,

coshk, (z+d) , sinhk, (z+d) )

ao .
(2,05 005 ) :m( cos0,coshk, (z+d) , sind,

coshk, (z+d) , sinhk, (z+d) )
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( y = BOT ke o coshak, (atd , sing
Uy Vs W = ———————( cosb, cos 2+ sin
S T Y sinkk,d ! ! ’ !

cosh2k, (z+d) , sinh2k, (z+d))

3afos k,

:m{ C0502003h2k2<z+d) 5

(u4 72)4 ,w4>

sinfzcosh2kz (2-+d) , sinh2k, (z+d)}

a;020;02 Fy

(M5,115 s Ws ) :mﬁ—‘—‘? k {COSaICUShkl <Z+d> 5

sinct,coshk’ (z+d) ,sink’ (z+d)}

a,a,0,0; Fe

_ 412092 I ; "
Sinhhd sinhind T, ¢ L cosazcoshk" Cztd)

(uG s Vs (s ) =
sinaz coshk" (z+d) , sinhk” (z+d)}

wheve , a; is the angle between the vector of (k, +k: ) and x

axis , &, is the angle between (k,—k, ) and x axis.

(1 Sinb;, +kysind,
1 C0S0, +k,sind,

k
o, =arc tan ( P’

kySinl; —k>sind
kicos8, —kscos0;

a, = arctan (

(2) pressure distribution ;

From Bewrnoulli's equation , the pressurve can be expressured

by the following form :
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©

from the perturbation method , and assume that

§+gz = QP+ BPos Y+ ( @ZPso+ aBP 1, + B2Pos + ) -

then substitute eq B9 , t) and eq (8) in eq ©, that we have :
OCa) P =—¢0+F0 e

1
O<02) PP :*¢f»ot *vu102+F20 ““““

2

O( aﬁ) Py :*¢11t —Ui0 *Uo: +F11 ““““

1
—P—:\gz—gb, ~7MZ+F( t) .......

875

As for OCB) ,0( B%) which corvesponds to OCa) ,0(a*)
but the subcvipts 10 , 20 , will be changed into 01 , 02 respec-

1

1
tively. Since Fio =Fo;, =0 , Fzo :IAszz s Foo =—BiE? and

4

F,; =0, that the pressure after two wave trains crossing

will be given by :

P i coshk, (z+d) oso ta coshk, ( z+d)
p- % 18 Toshk.d 0SPr T a8 k. d

afgk; {ESCosth,(z+d)

2sinh2k,d sinh?k,d —1])cos2¢,-+

oS
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+{1—cosh2k,(z+d))}

azggkz
2sinh2kzd

3cosh2k, (z+d)

f sinh?k,d

—1])cos2¢,
+(1—cosh2k, (2+d)]}

Q1820,0;2 Fy B
—_— _— h
STahk dsiniiod (C(Oit 02 ) coshhk! (z4d)

cost

coshk; (z+d) coshk, ( z+d )

+%sinhk, (z+d)sinhk, (z+d))cos (¢, +@z )

cost

+[(01702)%coshk"(z+d)f coshk, (z+d)
4

«coshk, (z+d) w%sinhkl (z+d) sinhks (2+d) )

ccos Co,—@2 )} e @4
(8) wave thrust
From Longuet-Higgins & Stewart ( 1964 ) , wave thrust
will be written as the following form
7 4
Sii :I (Po;;+pop:v; )dz+f pgzdz  eeeeeeen )
—a —d
where “ — " denotes the average of common wave period , and
0:; is Kromecker's delta. For the second-ovder approximation

, then the above equation can be simplified as
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1 O
Sij =5 08n%0:; +Pf_d<ﬂi#i_w25ij ddz e 9

thus .

1 — v = -
S,,:QPMHPJ (u?~w?)dz e @)
—d
1 — ¢ =5 =
S”:Epgyiz_‘_pf (vZ—w?)dz e @9
—d
0 ——
Sey =S,, = pj wvdz e (9
—d

where Six , S,y represents the flux of hovizontal momentum
parallel to the x , y axis and Sy, , S,z vepresents the flux of

x—, y— momentum across the plane y = constant and x =
1
consiant respectively. Then suppose E, :?pga? , Ez =

1

E, = 5 oga? | that the components of wave thrust of the

common wave will be given by

k,d k,d }
sinh2k,d sinh2k,d

S.. = FE, {cos?d, <%+

kaod
sinh2k,d

kad
sinh2ks d

+E, {cos26, (%—F )+ }

8EE b,k
osinh2k,dsinh2k,d

F?

522

k2 cos?a, (——————+

sinh2k'd _d_)
4k 2
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sinh2k'd d FZ .5 A sinh2k"d d
ST R g R et (R )
sinh2k"d  d 1 F
~(———— =) )+—— (o, +0:) cosk'd
4k" 2 2g F,

1
+ o Geosh (b, +k; )df%Hcosh(k, VAL

1

+
2g

(Coy—as) i— coshk"d-—%Hmsh( br—k)d
1 2
+ZGcosth1+k2)d] }

L+ k.d - k,d }
2 sinh2k,d sinh2k,d

S,y =E, {sin?8, (

' 1 kod kod
2 -
+E, { sin 02(2+sinh2k2d +sinh2k2d}

SEzEzkz kz {ﬁk'z[singa, ¢ sinh2k’d+

osinh2k,dsinh2k.d " F% 4k’

sinh2k'd d

Y

)j+F—22k”2[sz'n2(x (———
F? ‘ 4R"

sinh2k"d
4kll

d 1 F, ,
—5)]+2—g—[<01+02 )F; coshk'd
1 1 »

+IGcosh(k1+k2 )d-ZHcosh( k,—k,)d)

+ —1—[(01 —02) £ coshk"d— LHct)sh( ky—ky,)d
2g F, 4

+%Gcosh(k1+k2 Yd )2}

sinh2k'd  d
2

4
2

)
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k,d 1

Szy :Syz:EI {sz‘nZﬁ, ( W“FZD}

k.d 1
— )+
ssimioiag T4}

8E,E ki ke

FE: {sin202 DsinhZhdsinh2l,d

r?

{ sinh2k'd
FZ

4k’ )J

. d
R'Z ([ sin2o0, (3—#

FZ oo d  sinh2k"d
ZZ S 2P EEEONYY O e (50
+F42k [sm2a2(2+ Vi I} 69

(4) average energy demnsity .
The total average energy density is the sum of the kinetic

and potential emnergy densily , thus

according to the definition that

. 9 o 1 —
E, :J ngdZMJ. pgzdz =—pgnZ e 64)
- —d 2
— 1 7
E,: :_pf wi2dz  eeeeeeees (55)
2 —a

Then substitute the solutions of % and U in the eq. &, &)
, the second-order solution of avevage energy density will be

given by

L pZsinh2 k'
Dsinh2kdsinhzk,d (g kO Sinkzkd

— 2
E= (E,+Es )+ 2E B2k k> {F,
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E'sinh2k"d+ 20 (0,40, ) Tk coshk'd
g F,

+—i~Gcosh(k,+k2 )df%Hcosh(kl ~ks;)d)?

+—§—[(0,fog)

—%Hcosh(le, k) d)?}

Fq

3 EXPERIMENTAL RESULTS

L coshk"d—f—i—G cosh(k,+k,)d

The experiments of two wave trains crossing in intermed-

tate depth have been performed at Tainan Hydraulics Labora-

tory.

A number of different testing vuns are listed in Table.

1, and the comparison of the theoretical and experimental

results ave shown through Fig. 4 to Fig. 10.

Table. 1

d | T, |T: |H, |H,
Run| 0 H,/L\H,/Ls| d/L,| d/L,

(em)|(sec)|(sec)|(em)|(em)
1 |45° 36 1.0 1.0 4.0 |4.0 10.028 {0.028 |0.252]0.252
2 |45° 36 0.8 0.8 [4.8 |4.8 [0.049 [0.049 [0.367 | 0.367
3 145° | 36 0.8 [0.8 [3.2 |6.4 [0.032 [0.064 [0.367]0.367
4 145° | 32 0.9 0.9 4.0 (4.0 {0.034 10.034 [0.271]0.271
5 [45° 36 0.8 1.0 4.8 14.0 [0.049 [0.028 10.367 ] 0.252
6 {45° | 30 0.7 0.8 {5.2 [4.0 [0.069 ]0.047 [0.400] 0.313
7 [45° 32 0.7 0.9 [4.4 |4.0 [0.058 {0.034 [0.421]0.271
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m
—_— Theory
-4 LR B Experiment
2
[o] Q L L t
. 0.5 . 1.0 (sec)
-2 . .
-4
{em) (9:45°, d=36cm , T/ =T,=1.0sec, Hy= H;24.0cm)
Fig.4
n
6+
Theory
4k
¢ e e« FExperiment
ot
¢
I 1
o] T 53 N o8 t (sec)
-2k . .
-4} v e e
_s}
(em) (=45, d=36cm, T/ = T,=0.8s6c, H = Hy»4.8¢cm)
Fig.5
n
6
. Theory
4
LECIE I IRY Experiment
2
1 1 t
o] < 04 " 0.8 (sec)
-2 . .
4 « . .
-6
(em) (8+45", d=36cm, T)= T, =0.Bsec , Hy232cm, Hp=6.4¢m}

Fig.6
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n
Theory
4
2 D] Experiment
2 . .
° . ) . )
X 0.45 N o) t (sec)

-2
» te . ot

{cm) (8:45", da32cm , T = T,=09sec, H = Hp=4.0cm)

Fig. 7

The variation of water surface elevation for the same wave

period and height or the same period but different wave height

of two primary wave components crossing are tllusivated from

Fig.4 to Fig.7. It is obvious from these figures that the

profiles of common wave are sinusoidal curves and the theore-
tical values of common wave height are just equal to the sum

of two primary waves. Although , those of the experimental

values are less than theovetical values but they ave coincident

very well.

Hsu ( 1979 ).

3

Theory

I N T N L \7 e

(cm) o
(@+45 , ds36cm , T)=08sec , Ty~ 1.0sec, H,24.8cm, H,=4.0cm)

Fig. 8

The above mentioned results are in agreement with
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Theory

(848", d=30em , T,~0.7s8c, T, 20.8s8c, H =5.2cm , Hy=4.0cm)

{em)

Fig.9

Theory

fem) (6+45", de3zem , T,+0.7s0c, T, =0.9s0c, Hyvddem , Hy*4.0cm)

Fig.10

Moveover , for the cases of different wave peviod and
height , the variation of waler suvface elevation are shown
Sfrom Fig.8 to Fig.10. It is interested to find that the per-
tod of common wave are equal to the least common multiple of
two primary wave components exactly and wave profiles of
common wave ave move complicated dbut the available experim-
ental data are also coincident with theoretical curves. The
comparat ive values of the theovetical and experimental results

are presented in Table. 2.
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Table. 2
Run 7, T, | H, | H, | HY | HY |H,+H,|JHF¥HZ| H, H,
(sec)|(sec)|[Cem)|Cem)|Cem)|Cemd| Cem) | (em) |JHEI+HZ |JHI+HE
1 1.0 1.0 14.0]14.018.0[7.2} 8.0 5.66 1.414 1.272
2 0.8 0.8 4.814.819.6 (8.8 9.6 6.79 1.414 1.296
3 0.8 0.8 13.216.419.618.7] 9.6 7.16 1.341 1.215
4 0.9 0.9 14.0}14.0)8.0(7.5] 8.0 5.66 1.414 1.325
5 0.8 1.0 1 4.814.0186 18,27 8.8 6.25 1.376 1.312
6 0.7 0.8 [5.2/4.0[9.0]9.0/| 9.2 6.56 1.372 1.372
7 0.7 0.9 {4.414.018.01(8.271 8.4 5.95 1.345 1.378

% H, is the theoretical value , H, is the experimenial value.

4 CONCLUSIONS

In this paper , the authors pay attention to the non-linear
interaction of two free wave trains crossing in intermediate
water depth. From theoretical approaches , the velocily
potential and water surface elevation have been expanded to
the second order by pevturbation method. And wave height ,
velocity of fluid particles , pressure distribution ,wave thrust
and energy density of the common wave are also investigated.
In order to verify the theovetical vesults , elaborated and
numerouns experiments have also been performed in our labora-
tory. Some of the remarkable conclusions can be submitied as
follows

(1) After the interaction of two free wave trains , the
common wave period is just equal to the leasi common
multiple ( L.C.M. ) of the period of two primary compo-

nent waves.
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(2) From the theoretical calculation and experimental verifi-
cation of the non-linear wave interactions , the maximum
common waves height are higher about 20 9% to 41.4 % than
those derived from energy Superposition.

@) It is well simplified from the theoretical vesults devel-
oped by the authors . as k, =k, , a, =a, , that it
becomes short-crest waves ; as ky, =—k, , a, =a, , it
becomes standing wave and as k;, = ky , a; =a, it
becomes stokes progressive wave. Here b, = | K1l , ks, =
| K2 |. K;,Kz and a, , a, are wave numbers vector and
wave amplitude of the two primary wave components
respectivel y.

The tertiary intevactions are proceeding continuously in our

sevies reseavches and will be presented later.
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