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ABSTRACT 

In this paper  ,   the authors paid attention to  the non- linear 

interaction of two free  wave trains  crossing  in intermediate 

water depth.     From theoretical approaches ,   the velocity poten- 

tial and water surface elevation have been expanded to the 

second-order by perturbation method.      And  wave height   ,  velo- 

city of fluid particles  ,  pressure distribution  , wave thrust and 

energy density of the common wave are also investigated.     In 

order to verify the  theoretical results , elaborated and  numerous 

experiments have been performed.     Some of the remarkable 

coincidence are obtained and  the conclusions have been presented 

in this  paper. 

I     INTRODUCTION : 

Concerning the non- linear  interaction of the short crested 

waves   has been  obtained by Fuchs ( 1952 ) for a second-order 

solution.    Chappelear (  1961  ) extended this to  third-order in 

the same manner using a formal power expansion. Hsu & Silve- 
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ster ( 1979 ) have also presented the third-order solution which 

encompass all angles of incidence  and  can be extended to the 

limits for both standing and stokes  waves.      Further ,   the 

second-order Eulerian water particle velocities throughout the 

bottom  boundary  layer  , mass  transport  of the first approxima- 

tion and the limiting cases of progressive and standing waves 

have been obtained by Hsu  , Silvester and  Tsuchiya (  1980 ). 

A comparision is also made with their available experimental 

data. 

The above comprehensive program of research on short- 

crested waves are  only applicable for the  same period and 

height of the two component waves.     However , for the non- 

linear interaction between  pairs of intersecting gravity wave 

trains of arbitrary wavelength and direction   on  the surface   in 

deep ivater has been developed by O. M.   Phillips  (  1960  ).     And 

the conclusion was made that  the second-order terms give rise 

to Fourier components with wave numbers and frequencies 

formed by the sums  and differences of those of primary compo- 

nents   , and   the amplitudes of these secondary components  is 

always bounded in time   and  small  in magnitude .      But  the 

third- order terms    can give rise to  tertiary components whose 

amplitude grows  linearly with time  in a resonant manner as  the 

interactions are satisfied to the resonance loop.      Furthermore 

, Longuet -Higgins  (  1962 ) has found  that  the rate of growth 

of the tertiary wave with time   is a maximum when 9 == 17°  ; 

the rate of growth with horizontal  distance  is a maximum when 

0 = 24°   , where Q denotes the angle between the   two  primary 

wave components. 

Based  on the approaching method of Longuet -Higgins 

( 1962 )  ,  the paper presents the second-order solutions of 
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velocity potential and wave profile after two   wave trains 

crossing in intermediate water depth.     Then the water particle 

velocity ,  pressure distribution , wave thrust and energy desity 

are also investigated.     Moreover ,  the verification of the 

experiments has been  performed in the laboratory. 

2.     THEORETICAL   APPROACH 

Fig.  1 

Let us suppose that  two free wave trains are crossing  in 

the uniform ,  impervious  intermediate water depth as shown    in 

Fig-   1.      Since  the presence of vorticity is very small   ,  so that 

it  is permissible to assume  the existence of a potential function 

<p~ for the velocity U in an  imcompressible non-viscous flow : 

thus 

U: V2^ = 0 •(1) 

And  let Z be  the vertical coordinate  ,   then  we have  the 

dynamic condition at  the free surface  ,  as 
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gV+<t>t +jU2 =F( n atZ = V  (2) 

where F(t)   is Bernoulli's constant for linear case ,  but the 

nonlinear which can be expressed by Longuet-Higgins   ( 1953 ) 

F{t) = (~V2)<<+y(( V^)z-»2)  (3) 

Here " — " denotes the average for wave period and 

V*    =   (    T— ,    — ) 
ox      0 y 

The kinematic condition at the free surface  is 

Vt ~</>*+<f>*V* + <f>yVy = 0 atZ = r)  (4) 

For notational  simplicity that  it  is better  to denote the 

partial differentiation by the subscript   , <px = d </>/ d x 

<pn =d2(p/dtdz     etc.     Then  taking the material derivative 

, D/Dt   ,  of eq(2)   and  subtracting g times eq . (4) ,   we obtain 

<t>t,+g<l>* + (U2)t +U • V(y[/*) = 0 atZ=ij      (5) 

Now  let  eq. (2)    and  eq . (5)   be expanded in Taylor's series 

about Z = 0    to give 

• v+t'frt+vfrt+jv^t**+•••} +tju2+v(j,u2) , + •••] =Q 

of 2 = 0  (6) 
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{(<p,,+g^,) + V (<!>,, +g<b,)* + -}+{(U2'),+V(U *),*+•••} 

+ {U- V( ytf2 ) + •••} = 0 at Z=0 •(7) 

Suppose that  we define 

formal expressions  : 

rjij   , Uij  and Qtj  by the 

f) = {ai)10 + ^Voi )+ (a2r)20 +aprj,, + pzyjo; ) +. 

{/= (aUw+pu0l ')+{azU20+a^UI1+^U0z ) + • 
•(8) 

where a , /3 a^e <o be small   ,  independent and proportional to 

the surface slopes  , a<j>10  and  /3 0oi   represent   the first approxi- 

mation of two crossing wave trains.      The remaining terms 

represent  wave  interaction.      Then substitute  eq. (8)   in  eq.(\), 

(6) , (7) ,   that  we obtain   '. 

0(a): 

V2(f>10 = 0 •(9) 

gV to +<t>iot   =QlO at Z = 0 

gfilO*   = 0 at Z - 0 •(11) 

at Z - •(12) 

0 (a2) 
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V2d>20 = o 

gVzo +<f>2oi + Vio<fi,otz +YU*° =®2°      at Z = 0 

<p2o,t+g<p2o*+y,o (.<f>iott+g</>io,), + (.Uf0')t =0   at Z =-- 0 (15) 

<t>ZOz =0 at Z = ~d  (16) 

0 (a/3)   : 

V3^,  = 0  (17) 

grl u+<f> in +Vio<poitz + y0i<f>iot*+Uio • Uoi =Q a      at Z = 0 

 (18) 

<f>lltt+g<f>U*+VlO   (<Poit,+g<Poiz'), + Voi   (<l> Wlt+g<PlO*)z 

+ 2 (Ui„ • Uoi),  = 0 at Z = 0  (19) 

<f>uz = 0 at Z = — d  (20) 

And the terms  o/0(/3),0(/32) are the  same expressions as 

0  (a)   ,  0 (a2)   but  the subscript  of 10  ,  20 from  eq. (9) 

through   eq . (IS) will be changed by o\   ,  o2 .       If we assume 

that   the water  is  intermediate for the first-and  second- order 

waves  that  the solutions  will  be  obtained as   '. 

<pio=Ai  cosh ki ( z + d ) sin <p,  (21) 

a  A 
f)io =    cosh   kid   coscpi 

g 
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Oi = gkt  tank k,i 

,      _ 3       kfAf 
cosh 2 kj ( z + d ) sin2ip, 

and 

k2A2   cosh2k,d ( cosh2k,d+ 2 ) 
V'° =—g Tmh^Td    C°S2(P' 

boi — B, coshk2 ( z +d ) sin<p2 

(T2-8, , 
)?0j —      coshk2d cos <p2 

oi = g k2   tank k2d 

3        kjBf 
8   a2 sinh2k2d 

cosh 2k2 ( z + d ) sin 2 <p2 

kfBf   cosh2k2d( cosh2k2d+2 ) 
'" =T^ TlnJ^Td  eos2i>> 

for convenience , where 

<p! = kxX — a ,t  and  <f> 2 = k2 x — a 2t 

Combining the solutions of the first- order from  eq. (17) 

through   eq. (20) ,   then  (/>,,   and  r}12  of the nonlinear term  will 

also be found  out. 
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> u = A,B, k, k2 C -pr-   coshk' ( z +d } sin ( cp2 + v>2 ) 

F2 + —   coshk " ( z + d ) sin ( <p t —<p2 ) ) 

i P I 
i?,, =-AjB,*,i2 {[(ff,+a2) -r  coshk' d + ~G 

g r 3 4 

cosh ( kj + k2 ~) d — —Hcosh ( kx — k2 )rf] cos ( (p,+<p2 ) 

+ [ ( o, — a 2 ) -~  coshk" d ——Hcosh ( k, —k2 ) d 
r 4 4 

+ —G cos/; (_k, + k2 ) d'] cos (<p2 — ^ ) } 

where 

_ 1      <jf  sinhk2d       o2   sinhk,d 
2      o2   sinhkjd       a,   sinhk2d 

(   coshk Idcoshk2d—— sinhk ,dsinhk2d ) 

_.        1  , af   sinhk2d       o2   sinhkid .     „  . 
^  = V ( •   , ,     • •   , ,     , ) + 2 ( o, — o2 ) 2      oa   sinhkid       Oj   sinhk2d 

cos 6 1 
( —-— coshk 1dcoshk2d+ — sinhk,dsinhk2d ) 

Fj,  = ((Jz+a^. ~) 2 coshk' d — g k 'sinhk ' d 
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F4 = ( a, — o2 ) 2 coshk"d — gk" sinhk "d 

o, a2 2 

H— 2 sin   — 
a ta2 2 

k' = \KI+K2  |   ,  k" = \K,-K2  I 

e = I el -e2 I 

// at   ,   a2   denotes the amplitude of two primary wave 

components respectively.      Then   both of the velocity potential 

and water surface elevation function of the second- order solu- 

tion  of the common  wave will  be given   by 

a,g coshk, (z+d)     . a2e coshk2(z + d) 
9 = FT-!  sin(p,-{ ——   sin<p2 a, coshk id o2 coshk2d 

3     ,       cosh 2 k, ( z +d ) 
-Jafa' sinh'k.d   "«2^ + 

3     2        cosh 2 k2 (z+d )      . a1a2o1a2 

8 sinh4k2d sinhk 1dsinhk2d 

[ -=r~ coshk' {z+d) • sin (<p,+<p2 ) 
r 3 

F2 + -=— coshk" ( z + d ) sin ( u> „ —<p2 ) ) 
t 4 
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a2,k,     coshk,d   ,        , „ ,    ,    „ . 
v = a,cos<p , + a2cos(p2 -\ ;—  —:—rn—r ( cosh 2 k ,d+2 ) r 4       stnh   k,d 

aik2     coshk2d   ,       . „ ,    ,    „ N cos 2<p , H •—     .   , ,,—- ( cosh 2 k2d+2 ) cos 2 ©2 r 4      smh3k2d 
r 

0,020,02 .  r F7 , 
{ [ ( Oi+ff2 J-p;— cos«&  fl + 

sinhk ,dsinhk2d F3 

+ —-Gcosh ( k ,+k2 ) d — —Hcosh (. k, — k2 ) d~) 

F 2 
cos (<p,+<p2 ) + C (°i—o2 ) —— coshk d 

r 4 

~~Hcosh ( k,— k2 ~)d + ~-Gcosh(k1+k2^d^  cos (<p ,—<p2}} 

From above  two equations  ,  examples of water surface 

elevation after two   wave trains crossing are graphed in Fig.   2. 

and Fig.   3.     In Fig.   2,  curve A is  the first - order solution  of 

common   wave  ,  curve B is  the solution of Stokes  wave  which 

obtained from the front of four terms on the left side of eq • (34) 

,  and curve C  is the solution of eq . (34) , also representing the 

condition of short - crested wave  , as noted by Hsu et al  ( 1979). 

In Fig.  3  ,  the dash-line and solid- line denotes  the solution of 

first -order and  second- order respectively  , and  it  is  evident 

that  the period of the common  wave  is equal   to  the least 

common   multiple of the two primary wave components. 
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Based on  the velocity potential  and water surface eleva- 

tion funtion  ,   the water  particle velocity  ,  pressure distribu- 

tion , wave thrust and energy density can also be  investigated 

as  the following form '. 

(1)     water particle velocity  '. 

After two   wave trains crossing ,  the components of water 

particle velocity ( u  ,  v   , w ) for  the second-order can  be 

expressed as 

u = u]cos<p1 + u2cos<p2+u3cos2(p1+u4cos2<p2 + 

+ Us cos ( <p, + w2 ) +u6cos ( <p, — (p2  )  (3 

v =- v, cos<p j +v2cos(p2 + v3 cos 2(p i + v4 cos2(p2 + 

+ V 5 cos ( <p 1 + ip2   ) +Ve COS ( (f>j — <p2   ) 

w = Wjcosip j +w2 cos<p2 +w3cos 2<p , +w4cos2<p2 + 

+ W5 COS   ( <p , +(p2   ) +lVe COS   ( (p,  ~<p2   ) 

from the above three equations  , we have 

(«,,», ,», ) =    . '   ' ,   ( cos 9 , coshk, ( z + d ) , sind, 
sinhkjd 

coshk, ( z + d ) , sinhk, ( z + d ) ) 

(u2,v2,w2 ) = —. 2, f   ,  ( cos02 coshk2 (z+d)  , sind2 sinhk2d 

coshk2 ( z + d ) , sinhk2 ( z + d ) ) 
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3afa jk i 
{ u3 ,v3 ,ws ) = ( cost), cosh2kj { z+d ) , sinBt 

4 sinhkjd 

cosh 2 k j { z + d ) , sink 2k t { z + d )) 

( u4 , v4 ,w4 ) = -—/   2.  2     { cos62cosh2k2 {z + d) , 
4 sinh k2d 

sind2 cosh2k2 {z + d) , sinh2k2 {z + d)} 

a1a2a1a2        F, 
ius'Vs >W* } = sinhk,dsinhk,dT; k   { C°Sa' C°Shk' ( * + <° ' 

since, coshk' {z + d) , sink' {z+d)} 

. a 2a2o ,a2 F2     .  , . . 
( ue ,ve ,w„ ) =    . —.   ,,   ,-T k" { cosa2 coshk" { z + d) , 

sinhkjd smhk2d F4 

sina2 coshk" { z + d ) , sinhk" { z+d) } 

where  , a,   is  the angle between  the vector of { k, + k2 ) and  x 

axis  , a2   is  the angle between   {k, —kz ) and x axis. 

, k j sinB, + k2 sinff2 a, = arc tan {— - :—-— ) 
kz cosfli + k2 sino2 

. ki sind, — k2 sin02   . 
a2 = arc tan { — —- ) 

k, cosdi — k2 cosv2 

(2)     pressure distribution  '. 

From  Bernoulli's equation  ,  the pressure can be expressured 

by the following form : 
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P 1 
—- =— gz—<j>, ~-^u2+F( t ) 
P z 

from the perturbation method , and assume that 

—+gz = («FJ0+/3P0i ) + (a2P20+al3P11 + f}2P02 + y 
P 

F( O = ( aF10+(iFo, ) + ( a2F20+a^FI1 + ^F02 ) + • 

then   substitute  eq (39) , (id) and   eq (8) in   eq (38) , that we   have  '. 

O(a)     : P1B =-<j>10, +F10  (41) 

0(a2)  : P20 = -<f>20t -ju10
2 + F20  (42) 

0 ( a/3 )  : P,, = -</>„, -UJO • Uo,+F,,  (43) 

As for O ( fi ) , O ( (32 ) which corresponds to O ( a ) , 0( a2) 

but the subcripts 10 , 20 , will be changed into 01 , 02 respec- 

tively.     Since F10 = Foi = 0  , F20 =~rA2k2  , F02 =—Bfkf  and 

F,i =0  ,  that  the pressure after two   wave trains  crossing 

will  be given by  '. 

P coshkj^z + d} coshk2(z+d} 
— =~gz+<Zig   r~,—;    cosw,+a2g  ——    cosm2 p        s £     coshk,d v B      coshk2d 

Y 

afgki ,     3cosh2k1 (z+d} 
2sinh2k,diy-        sinh2k,d Y)cosl9l + 
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+ [ l-cosh2k, (z + d)~)} 

, - 3 cosh2k2 ( z + d ) -, 
2sinh2k2d sinh2k 

+ [ 1 -cosh2k2 (z+d)]} 

(1,(120,02 , r F, 
\ I ( °i + »2 ) -rr- coshk   ( z + « ) 

sinhk ,dsinhk2d F3 

cosd , ,    ,        ,,        , ,    ,        , , 
•—-— coshk, ( z + d ) coshk2 ( z+a J 

+ — sinhk, ( z + d) sinhk2 ( z + rf ) ) cos (^i +^2 ) 

E1 Cfie ft 

+ [(o ,—o2) —p- coshk" (z + d ) — coshk, (z + d) 
r< 2 

coshk 2 (z + d) ——sinhk, ( z + d) sinhk 2 (z + d)*} 

cos ( <p, —<p2 ) } 

(3)    wave thrust 

From  Longuet -Higgins & Stewart  (  1964 )   , wave  thrust 

will be written as  the following form 

Ji ro 
(Pdu+pPifJj ~)dz+\       pgzdz 

-d J -d 

where  " — " denotes  the average of common  wave period , and 

8ij   is Kronecker's delta.      For the second-order approximation 

,  then  the above  equation can  be simplified as 
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1 _ C°      .       
Sn =-~pgy2dij +p \      (Hi Hi -w2du ) dz 

2 J  -d 

thus  '. 

1 —        C«      —    — 
S„ ~—pgf)z + p I      (uz~wz~)dz 

2 J  -d 

1       —        r°      —    — 
S,, =~pgr)2 + P\       (v2-w2)dz 

i: Sx, = Ss% ~ p \      uv dz 

where S,,   , Syy  represents  the flux of horizontal  momentum 

parallel  to the x  , y axis and Sxy   , Sy,  represents  the flux of 

x— , y — momentum  across  the plane y= constant   and x = 

constant respectively.     Then  suppose E1 = — pgaf , E2 = 

E2  ~ — Pga£  ,   that  the components of wave  thrust  of the 

common  wave ivill  be given by 

_       ,       2      . l_ kjd      , kjd       . 
i>„ -E^cos  0,{. 2 + sinh2k,d)+ sinh2k,d } 

+ E2{cos202 (-+-—___) + • 
2      sinh2k2d        sinh2k2d 

SEiE2k,k2             ,F2,.,,       ,      ,sinh2k'd      d. 
{-^k 2lcos2

ai ( — + —) 
psinh2kjdsinh2k2d    F2 i k' 2 
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. sinh2k'd      d Fi ,,,. ,        ,      ,sinh2k"d      d^ 

sinh2k"d      d \ F, 
- ( • — ) ]-l f ( a, + o2 )  cosk'c 

4 k" 2 2g- F3 

+ ~Gcosh ( k, + k2 ) d — —Hcosh ( k, —k2 ) dy 

1 F2 1 
+ -— C ( "1 — <?£ ) 77- coshk"d — —Hcosh ( k, —k2 ~)d 

£ g r 4 4 

+ jGfos/z( &2+&2 )<02} 

S,y =Ej { sin2d, ( —•H .   , „ ,    , )H •   , „,—7 } 
2      sinh2k,d sinh2k1d 

+ F    I    '«2(?    f   1  1        ^^ ") I        ^^^        } 
2      sinh2k2d sinh2k2d 

iEjEzkjkz , Ff  ,,.,.   .   „      , sinh2k'd     d N 

psinh2k1dsinh2k2d    FI 4 k' 2 

/,sinh2k'd      d N>     F# ,,,„,    .   _      , sinh2k"d      d . 

, sinh2k"d     d ]•   r, *, Fi ,,, 

+ -rGcosh ( k2 + k2 ) d~—Hcosh ( k2 —k2 ^) d}; 

1 F^ 1 
+ -— C ( Oj — (ji, ) —— coshk"d— —Hcosh ( k ,~k2 ) d 

2g t, 4 

+ ^-Gcosh(k1+k2~)d')2}  (51) 
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S„=S„=E,{sin2Bl( J.^ +\» 

-F  I    '   9ff   (       k'd ••—11        8E1E2k1k2 2 f S"'    2 K2sinh2k2d     4 ;J    p sinh2k,dsinh2k2d 

.Ff , ,. f    .   „      , d     sinh2k'd . . 
{        fe.»Cstw2ai(-+      4fe<        )] 

F/ , ,,, ,    . , <2      sinh2k"d . ,, 

(4)     average   energy  density  '. 

The total average   energy density is the sum  of the kinetic 

and  potential  energy density ,   thus 

E = E~P + Ek  (5<s, 

according  to the definition  that 

—       f" C° 1 
EP = I     pgzdz-\     Pgzdz - — pg 

J   -d J  -d I 

1 p 
— P \      u 
2 J -„ 

V 

Et =— P 1      uzdz 

Then substitute the solutions of V and U in the eq . (54) , i 

, the second- order solution of average energy density will be 

given  by 

E=(.El+E^+n
2E'E>

2
h
k'k2 .„,    . {%;k"sinh2k' 

psinh2k1dstnh2k2d     Ff 
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F2                             2 F 
~P§ k"sinh2k"d-\ ((Oj + o2 ) -p- coshk'd 
f 4 g r 3 

~rGcosh( k, + k2 )d — —Hcosh ( k; ~k2 ) d~} '• 

2 F 1 
— C C "i —»a ) "TT- coshk"d + ~-Gcosh ( ^ + £* ) , 
g F 4 4 

-jHcosh(ks -k2 )d}2} 

3. EXPERIMENTAL   RESULTS 

The experiments of two   wave trains crossing in  intermed- 

iate depth have been  performed at  Tainan  Hydraulics Labora- 

tory.      A  number of different  testing runs are  listed in  Table. 

1   ,  and   the comparison of the  theoretical  and  experimental 

results are shown   through Fig.  4 to Fig.   10. 

Table. 1 

Run e 
d 

(cm) 

Tj 

(sec) 

T2 

(sec) 

Hi 

(cm) 

H2 

(cm) 
H,/L, H2/L2 d/L, d/L, 

1 45° 36 1.0 1.0 4.0 4.0 0.028 0.028 0.252 0.252 

2 45° 36 0.8 0.8 4.8 4.8 0.049 0.049 0.367 0.367 

3 45° 36 0.8 0.8 3.2 6.4 0.032 0.064 0.367 0.367 

4 45° 32 0.9 0.9 4.0 4.0 0.034 0.034 0.271 0.271 

5 45° 36 0.8 1.0 4.8 4.0 0.049 0.028 0.367 0.252 

6 45° 30 0.7 0.8 5.2 4.0 0.069 0.047 0.400 0.313 

7 45° 32 0.7 0.9 4.4 4.0 0.058 0.034 0.421 0.271 
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Fig. 7 

The variation  of water surface elevation for the same wave 

period and height or the same  period but different wave height 

of two  primary wave components crossing are illustrated from 

Fig. 4 to Fig. 1.     It  is obvious from  these figures  that  the 

profiles of common  wave are sinusoidal curves and the theore- 

tical values of common  wave height are just equal  to  the sum 

of two   primary waves.      Although   ,   those of the experimental 

values are  less  than  theoretical  values but  they are coincident 

very well.      The above mentioned results are  in agreement with 

Hsu  (  1979 ). 
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-4 \£i^ •£*/ 
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19.45* d 36cm T, - 0.8 sec  , T2 • 1.0 sec H, =4.8 cm H2- 4.0cm ) 
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Fig. 10 

Moreover , for the cases of different wave period and 

height   ,  the variation of water surface elevation are  shown 

from Fig.?,   to Fig. 10.      It  is  interested to find  that the per- 

iod of common  wave are equal  to  the  least  common multiple of 

two   primary wave  components exactly and wave profiles of 

common  wave are more complicated but  the available  experim- 

ental data are also coincident with theoretical  curves.      The 

comparat ive values of the theoretical   and experimental results 

are presented in Table.2. 
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Table.2 

T, 
Run 

(sec) (sec) 

H, 

(cm) 

H2 

(cm) 
Hi 

(cm) (cm) 

H.+H, 

(cm) 

H, H, •SM+Hj 

(cm) jHf+Hi VHf+Hi 

1      1.0 1.0 4.0 4.0 8.0 7.2 8.0 5.66 1.414 1.272 

2     0.8 0.8 4.8 4.8 9.6 8.8 9.6 6.79 1.414 1.296 

3      0.8 0.8 3.2 6.4 9.6 8.7 9.6 7.16 1.341 1.215 

4      0.9 0.9 4.0 4.0 8.0 7.5 8.0 5.66 1.414 1.325 

5      0.8 1.0 4.8 4.0 8.6 8.2 8.8 6.25 1.376 1.312 

6     0.7 0.8 5.2 4.0 9.0 9.0 9.2 6.56 1.372 1.372 

7      0.7 0.9 4.4 4.0 8.0 8.2 8.4 5.95 1.345 1.378 

*//,   is the theoretical value  , Hp  is the experimental value. 

CONCLUSIONS 

In this paper , the authors pay attention to  the non-linear 

interaction of two free wave trains crossing in intermediate 

water depth.      From theoretical approaches  ,   the velocity 

potential and  water surface elevation  have been  expanded to 

the second order by perturbation method.      And  wave height   , 

velocity of fluid particles , pressure distribution  ,wave  thrust 

and  energy density of the common wave are also investigated. 

In order to verify the theoretical  results  ,   elaborated and 

numerous experiments have also been  performed in our  labora- 

tory.     Some of the remarkable conclusions can be submitted as 

follows  '. 

(1)    After the  interaction of two free  wave trains  ,   the 

common  wave period  is just  equal  to  the least common 

multiple ( L.C.M.   ) of the period of two primary compo- 

nent waves. 
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(2) From the theoretical calculation and experimental verifi- 

cation of the non- linear wave interactions , the maximum 

common waves height are higher about 20% to 41.4 % than 

those derived from  energy superposition. 

(3) It is well simplified from the theoretical results devel- 

oped by the authors  '.  as  ki  = k2   ,  a,  = az   ,  that   it 

becomes short-crest   waves   ;  as  k, = — kz   ,  a,=a2   ,   it 

becomes standing wave and as  k, = k2   , «! = a2   it 

becomes  stokes  progressive wave.      Here  k, = | Ki \  , k2 — 

| K2 | .  Ki , K2 and at   ,  a2  are wave numbers vector and 

wave amplitude of the two primary wave components 

respectively. 

The tertiary interactions are proceeding continuously in our 

series  researches and will  be presented later. 
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