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1. Introduction 

An artificial wave-absorber (wave-absorbing quay) has 
come to be widely used to counteract excessive wave action 
on ships and structures in harbors. Its two-dimensional 
characteristics on wave absorption have been investigated 
with several types of the wave-absorbing quay theoretically 
as well as experimentally, e.g., Jarlan (5), Terret, Osorio 
and Lean (9), Ijima, Tanaka and Okuzono (3), and Ijima and 
Okuzono (4), but the effects on the wave reduction in 
harbors seem to be not fully clear. This may be due to the 
lack of analytical methods for solving wave-induced oscilla- 
tions in harbors with the wave-absorbing quay. 

When the side wall in the harbor basin is assumed to be 
perfectly reflective, many theoretical methods for solving 
wave-induced oscillations in harbors have been presented: 
Ippen and Goda (2) solved the problem of a rectangular 
harbor by using the Fourier Transform technique. Hwang and 
Tuck (1) presented powerful method, which is applicable 
to arbitrary shaped harbors, by using integral equation 
(source distribution along the boundary) for the expression 
of the velocity potential. A similar method to that of Hwang 
and Tuck, but more suitable one for numerical computation, 
was presented by Lee (6), who used integral equation 
separately in the harbor basin and in the open sea. Raichlen 
and Naheer (8), Mattioli (7), and Yoshida and Ijima (10) 
presented the methods being applicable to the harbors of 
arbitrary shape and variable depth by further extending 
Lee's method. 

On the other hand, when the side wall in the harbor basin 
is partly or wholly composed of the wave-absorbing quay, a 
new boundary condition, replacing the usual  solid boundary 
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condition 3*/3v=0 ( * is the velocity potential and v, the 
normal to the boundary), is needed, and it can be expressed 
as a*/3v=fi*. The characteristics of the coefficient a 
depend on the nature of the wave-absorbing quay, and a 
generally takes complex values, in which S2=0 gives perfect 
reflection and fi=ik (k is the wave number) gives perfect 
absorption. It is obvious that a can not be determined 
either by theoretical approach or by experimental approach 
only, and both the approaches are required. And, If the 
boundary condition on the wave-absorbing quay is obtained, 
the methods presented so far for solving wave-induced 
oscillations can be directly extended to the harbors with 
the wave-absorbing quay. 

The aim of this investigation is to derive the boundary 
condition on the wave-absorbing quay, and to check that the 
methods for perfectly reflective harbors are applicable to 
the harbors with the wave-absorbing quay by using the 
obtained boundary condition. 

2. Theoretical Formulation 

Figure 1 shows schematic drawing of the harbor with the 
wave-absorbing quay: an arbitrary shaped harbor of a 
flat bottom is directly connected to the open sea. The 
boundary line on the harbor basin as well as the straight 
coastline are assumed to be perfectly reflective except that 
on the wave-absorbing quay. If there is no wave-absorbing 
quay in the harbor, the problem is reduced to a usual harbor 
resonance problem, which has been already solved by, e.g., 
Hwang and Tuck (1), Lee (6), etc. The following theoretical 
formulation is devoted to derive the boundary condition 
on the wave absorbing quay. 

The type of the wave-absorbing quay considered in this 
investigation is illustrated in figure 2. This type of the 
wave-absorbing quay, is now widely used in practice. It 
comprises a uniformly perforated vertical wall and a water 
chamber behind the wall, b and d indicate the thickness of 
the wall and the length of the water chamber, respectively. 
The water chamber is further divided into small chambers 
along the perforated wall with partition walls. 

The fluid region in front of the perforated wall is 
indicated as region (0), and the fluid region in the water 
chamber, as region (1). In each region, physical quantities 
such as the wave amplitude, the fluid velocity, etc., will 
be expressed with either subscript 0 or subscript 1 from now 
on. 

The fluid is assumed to be inviscid and incompressible 
and the fluid motion to be irrotational; then, the velocity 
potential of the fluid motion can be expressed as 

0-{gaja)<j> exp (iat)         (1) 
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where g is the gravitational acceleration, a and a are the 
amplitude and the angular frequency , respectively, of the 
incident wave, and $ is a non-dimensional function which 
satisfies the Laplace equation, 

I7af = 0      (2) 

Assuming that the waves are  shallow water waves, and 
that the distance between the adjacent  partition walls is 
much smaller than the  incident wave  length  so  that the 
fluid motion in the y-direction can be negligibly  small in 
each water chamber, we can express the distribution of the 
wave amplitude c, and the horizontal fluid velocity u, as 
follows: 

Ci(x)= r, cos {k(x+b+d))  ( 3 ) 

td(x)=-i( rjgklo)sm{k(x + b + d)}        (4) 

where n is the unknown amplitude of the standing wave in 
each water chamber. In the region (0), the distribution of 
the wave amplitude z„ and the horizontal (in the x- 
direction) fluid velocity u, can be expressed with the 
potential function • as follows: 

Co= — ia<j>  ( 5 ) 

Un={gaja)-3jijdx       ( 6 ) 

We assume that the energy dissipation caused by the wave- 
absorbing quay is represented by linearized fluid resis- 
tances proportional to the fluid velocity and to the fluid 
acceleration in the holes. Then, the equation of the fluid 
motion in the holes can be expressed as 

dU        I   dp        ,    dU           (7) 

dt p   dx dt 

in which P is the fluid density, U is the fluid velocity in 
the holes, nt and y2 are the coefficients of the fluid 
resistances propotional to the fluid velocity and to the 
fluid acceleration, respectively, and 3p/3x is the pressure 
gradient in the holes, which is assumed to be given by the 
water level difference across the perforated wall as 

•fj=i* exp (i<rt)[W0, v)-U-b)1lb         (8) 

Then substituting equation (8)  into  equation (7), and 
writting the fluid velocity U=U0exp(iat), we have 
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£/„= ig[UQ, y)-U-b)l 
abKl+pJ-iWff)] 

.(9) 

The mass continuity must be satisfied both at the front 
(x=0) and at the rear (x=-b) of the perforated wall, and 
because the width of each water chamber is assumed to be 
much smaller than the incident wave length, the mass 
continuity equation can be expressed on each water chamber 
as follows: 

f/oF=«i  O=0) 

U0V = Ui      (x=-b) 

(10) 

(11) 

where V is the porosity ratio (the ratio of the hole area to 
the whole area of the perforated wall). In equation (10), 
the midpoint 'of the chamber width may be used as the value 
of y-coordinate in u,. 

From these mass continuity conditions and equations (4) 
and (6), the unknown quantities U0 and n can be expressed 
by a<t>/ax as follows: 

Uo=(galoV)-d</>ldx (12) 

v=i[khVI .<7 sin (fed)} • {gajaV)- (13) 

Thus, substituting equations (3) and (5) into equation (9), 
and eliminating the unknown quantities U0 and n by using 
equations (12) and (13), we obtain the equation, 

dx 
cot (.kd)      b (14) 

This gives a relation between the potential function * 
and its normal derivative a*/ax, and therefore can be used 
as the boundary condition on the wave-absorbing quay. 
However, this equation contains two coefficients of the 
fluid resistances, u, and n2, which have to be rationaly 
determined before we use equation (14) for numerical calcu- 
lations. They can be determined by sub-empirical way from 
theoretical and experimental approaches. 

In order to estimate the values of the coefficients, we 
consider the case that a plane monocromatic wave is incident 
on the wave-absorbing quay, which is now assumed to be 
infinitely long, at an angle 9 with x-axis as shown in 
figure 2. The distribution of the wave amplitude c0 and the 
horizontal fluid velocity u, can be expressed in this case 
as follows: 
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Co(£, y)—a exp (iky sin d) 

x [exp(ikx cos 6)+K exp(-ikx cos 0)]        .....(15) 

,      .        agk cos d        ...     ... 
uo(x, y)= — exp (iky sin (?) 

<r 

x [exp (jfca cos 6)-K exp(-ikx cos 0)]  (16) 

in which K is the complex reflection coefficient of the wave 
absorbing quay: the absolute value |K| means the reflection 
coefficient and its argument means the phase angle of the 
reflected wave. The rest of equations, that is, the equation 
of motion in the holes, the mass continuity equation at the 
perforated wall, and the equation of t, and u, remain valid. 

Therefore, using equations (15) and (16) for equations 
(5) and (6), respectively, and following the same procedure 
just used to derive the equation (14), we can obtain the 
following equation, 

.     cos d(cot(kd)-kba)-i(l-kbfi cos B) (17) 
| A | exp(ie)- cQs e{cQtikd)_kba)+i(i + kbp Cos 6) 

in whic a=(l+n2)/V,  s=(u1/o)/V, and e is  the  phase  angle 
of the reflected wave. 

Equation (17) gives a relation between the  coefficients 
of the fluid resistances,  the  reflection coefficient  and 
the phase angle. Since it is a complex equation, the coeffi- 
cients of the fluid resistances can be  determined  provided 
that the reflection coefficient and  the  phase  angle  are 
known.  In order to simplify the equation, we introduce  the 
following variables, x=kba(=kb(l+u2)/V), y=kbB(=kb(ut/a)/V) 
and m=cot(kd). Furthermore, we assume that the coefficients 
n, and y2 are independent of the incident wave angle. Then, 
equation (17) can be wrtten as 

\K\^(ie)={;n-X)-f-y\  (18) (m~x)+t(l + y) 

Separating this into the real part and the  imaginary  part, 
we have two equations for x and y, 

x* + yt-2mx-2[(l+r)l(l-r))-y+(l- + m2)=0       (19) 

o(x- + y*)-2(md + l)x + (om2 + 2m-5)=0  (20) 

2 

in which y=  |K| and 6=tane. 
Consequently, solving equations (19) and  (20)  simulta- 

neously, we have 
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A(dz+l)±V(d2+l)(A2-l) 

' V = A±-JA*-I 

&*0,ttO) 

($=iW) 

(S=0) 

(21) 

in which A=(1+y)/(1-Y)• The radical  sign which gives |K|- 
exp(ie) when x and y  are  substituted  into  equation (18) 
should be chosen: the  other  set  of x and  y  gives |K|* 
exp( ie + ir) . 

3. Theoretical and Experimental results 

Before conducting the theoretical calculations and the 
wave basin experiments, we first made two-dimensional wave 
tank experiments on wave reflection for a specific wave- 
absorbing quay to determine the resistance coefficients. 

The properties of the model wave-absorbing quay were as 
follows: The thickness of the perforated wall was 6cm; the 
length and the width of each water chamber were 10cm and 
6cm, respectively; the perforated wall had circular holls 
(14mm diameter) distributed uniformly and its porosity ratio 
V was 0.19. 

The model was set at one end of the wave tank (water 
depth h=0.35m) which is 18m long, 0.3m wide and 0.6m deep, 
with a flap type wave generater at the other end, and the 
reflection coefficient lK[ and the distance x* between the 
wall and the node were measured. The phase angle can be 
obtained from x* by the relation E=4TT (x*/D-(2n+l) ir (n=0, 
41, £2,...; L is the wave length). The measured values 

are shown in figure 3, in which the white circle and the 
black circle indicate |K| and x*/L, respectively. 

Using the measured reflection coefficients and phase 
angles, we calculated the coefficients w,/cr and u2 through 
equation (21), and the results are shown in figure 4. Figure' 
3 shows that the wave absorption characteristic of this 
model wave-absorbing quay is good for kh near 1.8, but 
relatively bad for kh less than 1.4. This corresponds to the 
results in figure 4 that both u,/o and v2 increase rapidly 
as kh decreases, and thus the boundary condition (equation 
(14)) approaches to the  solid boundary  condition  3<t>/3x=0 
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which means no wave absorption. 
Of course the wave absorption characteristics differ 

greatly depending on the combination of the values of b, d 
and V, but the scope of this investigation is to derive and 
to verify the boundary condition, and not to investigate the 
effective wave-absorbing quays, only single model of the 
wave-absorbing quay was used. 

In succession from the two-dimensional wave tank experi- 
ments, we conducted theoretical calculations and wave basin 
experiments for two model harbors with the wave-absorbing 
quay. The shapes of the model harbors and the locations of 
the wave-absorbing quay are illustrated in figure 5 (model- 
1) and in figure 7 (model-2). The wave-basin (20m long 9m 
wide 0.6m deep) in the laboratory of Civil Engineering 
Hydraulics, Kyushu University, was used. The water depth was 
kept 0.35m throughout the experiments. The incident wave 
height and the wave heights at several points in the model 
harbors were measured, and Amplification Factor (indicated 
by A), defined as the ratio of the wave amplitude in the 
harbor basin to the incident wave height, was calculated. 

As for the method for solving wave-induced oscillation 
in harbors, we used the method presented by Yoshida and 
Ijima (10) only because the computer program was available. 
The method is based on the direct use of Green's Identity 
Formula in three-dimension for the expression of the 
velocity potential of the wave motion in the harbor basin, 
thus the method itself is applicable to the harbors of 
arbitrary shape and variable depth. 

The comparisons between the theoretical and experimental 
results on the Amplification Factor are shown in figures 5 
and 6 for model 1, and in figures 7 and 8 for model 2. The 
broken lines and the black circles indicate the theoretical 
and the experimental values, respectively. In addition, 
theoretical results in the case of no wave-absorbing quay 
were also shown for model-1 with solid line, 
comparison. 

Figures 5and 6 and figures 7 and 8 show very good agree- 
ments between the theory and the experiment. This confirms 
that the boundary condition (equation (14)) and the values 
of the coefficients v^/o and y2, determined through equation 
(18) and two-dimensional experiments, properly represent the 
wave absorption effects of the wave-absorbing quay in 
harbors. The results also show that the boundary condition 
is practically applicable up to "Intermediate depth waves" 
inspite of shallow water wave approximation used for the 
derivation of it. 
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incident 
wave 

Figure 1. Schematic drawing of the harbor 
with wave-absorbing quay. 

>,,,, wm >,,,,>>,,,> > >\, 
Figure 2. Wave-absorbing quay. 
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Figure 3. Reflection coefficient and distance 
between wall and node measured in 
two-dimensional experiment. 
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Figure 4. Coefficients of fluid resistances. 
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Figure 5. Comparison between theoretical and 
experimental results for Amplification 
Factor at point P. 
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Figure 6. Comparison between theoretical and 
experimental results for Amplification 
Factor at point Q. 
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Figure 7. Comparison between theoretical and 
experimental results for Amplification 
Factor at point R. 

3.0 

A 

2.0 

1.0 

•     experiment 

_..-   present theory 

•"•+S 

_*_*-•'• 
model-2 

 i  
0.5 1.0 1.5  kh  2.0 
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Factor at point P. 
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4. Conclusions 

To solve wave-induced oscillations in harbors with wave 
absorbing quays, we have derived a boundary condition on 
the wave-absorving quay in the form as 8 $/3x=S2.it>. The coeffi- 
cient a contains two unknown coefficients of the fluid 
resistances, u, and n2. We have further derived a relation 
between the two coefficients and the complex reflection 
coefficient of the wave-absorbing quay, and have shown that 
nt and vi2 can be determined sub-empirically from the 
relation and the experimental data on wave reflection of 
the wave-absorbing quay. 

The validity of the boundary condition was confirmed by 
comparing analytical results with the data obtained by wave 
basin experiments. Scale effects on p, and u2, however, 
have not been considered, thus further investigations on 
them may be needed to use the boundary condition on actual 
harbors. 
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