
CHAPTER ONE HUNDRED SIXTY THREE 

ACCURATE MODELLING OP TWO-DIMENSIONAL MASS TRANSPORT 

Lance Bode and Rodney J. Sobey" 

Any numerical solution of the convective transport equation in an 
Eulerian framework will exhibit inherent numerical dispersion and 
solution oscillations.  The magnitude of such numerical errors is often 
so severe as to destroy the value of many computed solutions.  A 
successful and economical algorithm for the convective transport 
equation in one spatial dimension has been published recently by one of 
the authors (RJS), in which an exact solution is achieved by means of a 
moving coordinate system.  The present study describes the extension of 
this work to the more important and challenging two-dimensional case. 

INTRODUCTION 

Numerical methods for the solution of the two-dimensional convection- 
dispersion or advective-diffusion equation (ADE) abound in the 
literature of fluid dynamics.  In Cartesian coordinates (x,y) the ADE 
has the form: 

*r. 1C JC       / 3"C   3"C   , 

St    SK 3y 
3y 

where C(x,y,t) is the field of the substance that is re-distributed 
passively by the velocity field (u,v), t is time and v  is the diffusion 
coefficient.  The equation may also contain source and reaction terms. 

The attention given to ADE is a measure both of its importance and 
ubiquity.  Physically, an initial distribution C (x,y) = C(x,y,0) is 
given and the solution describes the field of C at any subsequent time 
over the solution domain, under the dual influences of advection and 
diffusion.  In many instances, and certainly in estuarine and coastal 
environments, Eq. (1) is advection-dominated, and diffusive effects are 
minor. To a first approximation, v  can be ignored the problem reverts to 
passive scalar advection. 
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More importantly however, it is the advective rather than the diffusive 
terms in Eq. (1) that present numerical problems.  Indeed, considerable 
attention continues to be devoted to the one-dimensional  ADE 
(6,7,12,14,15), a sure indicator of dissatisfaction with the current 
'state-of-the-art'. The reasons for this are well known, but often 
ignored.  Most solutions of Eq. (1) are Eulerian, in that they use a 
fixed computational grid. As pointed out by Fenton (6), solutions such 
as conventional finite difference or finite element schemes attempt to 
solve the equation, with no attempt to take account, let alone 
advantage, of the nature of the solution.  In problems dominated by 
advection, the performance of Eulerian solutions is often most 
unsatisfactory.  With many such schemes, numerical dispersion and 
solution oscillations completely degrade the value of the computed 
solution. 

In view of the above, a satisfactory solution of the two-dimensional 
problem remains to be demonstrated.  A successful and economical 
algorithm for the one-dimensional ADE has been presented recently by 
Sobey (15,16), in which an exact solution is achieved by means of a 
moving coordinate system. The present scheme is an extension of this 
Lagrangian scheme to two spatial dimensions.  The primary aim in such an 
algorithm is to permit the accurate calculation of mass transport 
(biota, pollutants) in continental shelf waters.  In such cases, the 
velocity field (u,v) that is applied to Eq. (1) would be provided by a 
conventional two-dimensional hydrodynamic model. 

GOVERNING EQUATIONS 

Setting \i = 0  in Eq. (1) gives the advection equation: 

3C    dC 3C —. + u — + v —  = 0. (2) 
3t    3x    ay * ' 

As the prototype problem, Eq. (2) is to be solved on a square, 
-K(x,y)!Sl, for t > 0 where the initial field of C is a cone of unit 
height, radius r and initial location (x , y ) - by convention (10,18) 
these parameters are r = 1/4, x = -1/2 and y = 0.  The initial 

.... o       o o conditions are: 

C(x,y,0) = c (x,y) = { (3) 

where r = [(X-XQ) + (y-yo)"]  . 

On the boundaries of the square, C is set equal to zero.  The velocity 
field is solid body (anti-clockwise) rotation about the origin: 

u = -f!y,v = + nx, (4) 

where « is the angular velocity.  Perspective and plan views of the 
initial conditions are shown in Fig. 1. 
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Fig. 1 (a) Perspective and (b) plan views of initial cone configuration. 

In the absence of diffusion (u = 0), the cone should return, 
undistorted, to its original position after any integral number of 
periods, nT = 2ntr/n; elements of the cone describe concentric circles 
with constant angular velocity n,   about the origin.  The range of C 
should always remain [0,1].  The rotating cone problem has become the 
basic prototype problem for two-dimensional advection, and has been used 
widely as a test bed for numerical algorithms (3,4,10,18).  It is 
undoubtedly demanding, since any dispersion (phase speed errors) 
immediately truncate the peak of the cone, as will be seen in the 
following section.  However, if such schemes are to be capable of 
mapping the evolution of point-like sources such as a pollution outfall, 
then the requirement of high fidelity at short wavelengths is absolutely 
essential. 

Jacobian Formulation 

For incompressible flow a stream function <li can be defined in the 
conventional manner by 

3*        a* 
u » - — , v = + —- 

ay        3x (5) 

This allows Eq. (2) to be expressed as 

3C 
at + J(C'*) (2-) 

where J is the usual two-dimensional Jacobian.  In this form the 
equation can be expressed in a variety of ways so that certain 
quantities are conserved throughout the region of integration.  Use of 
this has been made in particular for finite difference schemes beginning 
with the work of Arakawa (1), discussed in the following section. 
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EXISTING TECHNIQUES 

Two finite difference (FD) schemes, representative of existing 
techniques for the solution of Eq. (2) are reviewed below.  In order 
that an objective comparison of the performance and economy of the 
various schemes can be made with the proposed scheme, these two 
algorithms have been programmed and selected results are presented. 

Arakawa/Jacobian scheme 

The Jacobian formulation of Eq. (2') has been used widely to evaluate 
the advective terms in numerical weather prediction models as well as in 
a variety of other fluid dynamical applications.  For homogeneous 
boundary conditions in the absence of dissipation, it can be shown that 
a number of quantities, averaged over the region of integration, must be 
conserved.  For two-dimensional incompressible flow, if i  is vorticity, 

then i,   c* (kinetic energy) and {*" (enthalpy) must be conserved, where 
the overbar denotes the continuous spatial average.  Arakawa (1) was 
able to show that certain aliasing interactions were minimised by 
particular second order FD formulations for the Jacobian, resulting in 

the global conservation of C, C* and i"". 

The Jacobian, denoted here by J^ - see also Ref. (10) - conserves all 
three quantities. Numerical experiments showed that this formulation 
prevented instabilities that had caused numerical schemes to 'blow up' 
and the use of Arakawa Jacobians has become widespread. It is a 
relatively simple matter to extend this scheme to produce Jacobians that 
are fourth order accurate spatially.  One such formulation (1,10) also 
conserves all three quantities, and will be referred to as J . Although 
the conservative properties of J and J apply over the entire region of 
integration, this does not necessarily hold locally, with the result 
that the undesirable numerical dispersion can still be severe, 
particularly at the important shorter wavelengths. 

Two basic spatial grid spacings are used, As = 1/8 and 1/16. These 
result in uniform 17 x 17 and 33 x 33 square grids applied to the given 
area of integration.  These are denoted as cases A and B respectively. 
Both second order (J„) and fourth order (J ) Arakawa Jacobians are used, 
resulting in four cases altogether - A2, A4, B2 and B4.  Time stepping 
is via the conventional "leapfrog" scheme with periodic averaging to 
overcome time-splitting and appropriate re-initialisation.  Thus, Eq. 
(2' ) is integrated by: 

Cn+1  =  C"'1  +  2At j" . (6) 
i.3     1.3 1.3 . 

where J. . is either J (C). . or J (C). ..  Temporal accuracy is of 

order (At)^.  The usual stability criterion applies to limit the size of 
At to At < As/V    = AS/(fV2). 

max 

In Fig. 2 the progress of the cone as it rotates through one complete 
revolution is shown for case A2. In all cases, the perspective views 
are rotated back to the original position, with the centre at (-1/2,0), 
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Fig. 2 Perspective views of cone 
case A2 - see Table I. 

it intervals of a quarter rotation for 

for ease of comparison.  The defects inherent in such a scheme are 
immediately apparent.  In Fig. 2(a) after a quarter rotation, a wake is 
observed behind the cone proper for which only the 0.2 and 0.4 contours 
remain, even at this early stage - the range of C is [-0.25, 0.54]. 
This trailing wake continues to grow at the expense of the cone. By the 
end of one period - Fig. 2(d) - the structure of the cone is effectively 
unrecognisable, with the range of C now being [-0.31, 0.30]. 

For some improvement, equivalent results for case B2 at twice the 
spatial revolution are presented in Fig. 3. although a clear 
improvement, this second-order scheme is still totally inadequate. 
Numerical dispersion is so severe that short wavelength detail, 
particularly the cone's peak, trails behind in a wake of ever-increasing 
extent.  After one revolution the original range for C of [0, 1] has 
become [-0.23, 0.52].  In Fig. 4, the results for case B4 (fourth order 
Jacobian with As = 1/16) are presented after one and two revolutions. 
The range of C at these two times is [-0.13, 0.83] and [-0.16, 0.77] 
respectively.  The well-recognised improvement with higher spatial order 
schemes (4,8,10) is apparent, but these results remain considerably 
short of theoretical expectations. 

The overall results of these computations are listed in Table I.  This 
gives the cone parameters (maximum and minimum values of C and the 
coordinates of the maximum c value) for the various cases at time t = 
2T.  These results can, to a limited extent, be compared with the 
results of a number of studies of the rotating cone problem that have 
been collated by Christensen and Prahm (3). Unfortunately, there is 
little uniformity amongst these, especially with regard to the times at 
which results are obtained. The present discussion will concentrate on 
the results at t - 2T - c.f. Ref. (10). 
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Fig. 3 As for Fig. 2, but case Ba 

fig. 4 Perspective views at (a) t = T and (b) t » 2T for case B4. 

Lax-Wendrof£ Schemes 

Consiaer the one-dimensional advection problem sc/3t + u (i 
with u a constant. The standard Lax-Wendroff (LW) scheme 

C/3x) = 0, 
(13) arises 

if, c is expanded as a Taylor series in time and the advection equation 
is then used to replace C and higher time derivatives by spatial 
derivatives.  These are then approximated by centred FD approximations. 
Specifically, the one-dimensional scheme is: 
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_n+l n ji. „n n     s      ,     1  2,„n „_n   ,     n     „     , „. 
C =    C. r(C.,,   - C.   , )     +     -u  (C.   .   -  2C.   + C.      )     (7) 
l 12     l+l l-l 2^  v   l+l 1 i-l'     v    ' 

The LW scheme is both dissipative and quite strongly dispersive at short 
wavelengths (9).  An equivalent two step scheme has also been derived 
(7).  One advantage of the two-step formulation is the ease of extension 
to two or more spatial dimensions, as well as to higher spatial 
accuracy, as detailed in Gadd (7,8).  In the second paper, Gadd noted 
that the scheme in two dimensions was not unconditionally stable and 
introduced a further modification.  Like the fourth order Arakawa scheme 
above, calculations revert to second order at grid points adjacent to 
the boundaries.  The final scheme (8) was shown to have a superior 
performance for tne rotating cone problem over the earlier version. 

Selected results for this scheme (8) and the standard second order LW 
method are presented. The cases that have been calculated are denoted 
by C and D for grid spacings of As = 1/8 and 1/16 respectively, followed 
by the numbers 2 or 4 corresponding respectively to standard second 
order LW or the < fourth order) modified Gadd scheme (8).  In Fig. 5 the 
progress of the cone over one rotation is shown for case D2.  The 
overall impression is that these results are very similar to those 
exhibited by the corresponding second order Arakawa Jacobian experiments 
above. Quantitative details are listed in Table I. Again, doubling of 
spatial resolution does afford some improvement, but overall performance 
is poor.  For example, after one revolution the C range in case D2 is 
[-0.20, 0.49] versus [-0.23, 0.52] for the corresponding case B2.  In 
Fig. 6, case D4 is shown after one and two revolutions, the range for C 
at t = 2T being t~0.07, 0.76], compared with [-0.16, 0.77] for the 
corresponding Arakawa case B4.  The Gadd scheme is distinctly faster 
computationally, with two rotations for D4 taking 168 s on a DEC 10-21 
mainframe versus 286 s for B4 - see also Table II.  The performance of 
the Gadd scheme (8) does appear superior, since the negative values of C 
are not as extreme as those in case B4.  However, it can be shown from 
Fourier analysis (9), that this can be attributed to increased 
dissipation and not necessarily to reduced dispersion at the shorter 
wavelengths. 

It is apparent from Figs. 2-6 and Table I that the major problem is 
dispersion, although increased spatial accuracy in the representation of 
the advective terms can go a long way towards improving this situation. 
The effects of time differencing errors and spatial resolution are much 
less important.  This defect (dispersion) is common to all Eulerian 
schemes; it is widely recognised and has been commented upon 
extensively, often in quite scathing terms (6,11,17).  In spite of this, 
such schemes continue to enjoy widespread usage. 



MASS TRANSPORT MODELING 2441 

Fig. 5 As for Fig. 2, but case D2. 

Fig. 6 As for Fig. 4, but case D4. 

Spectral Methods 

The major problem with the above FD methods, and indeed with all low 
order polynominal-based Eulerian methods is their failure to resolve 
spatial structure, particularly in the calculation of first derivatives. 
The spectral methods introduced by Orseag (10) have, by and large, been 
able to overcome this problem.  They involve the expansion of the C 
field spatially in a set of suitable basis functions, chosen in general 
to satisfy the boundary conditions.  Initial work used complex 
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two-dimensional Fourier series for the rotating cone problem which 
required the boundary conditions to be spatially periodic.  Computations 
are sped up significantly by the use of the Fast Fourier Transform. 
Simple calculations reveal how with spectral methods, all  available 
points enter the computation of derivatives, resulting in schemes that 
are markedly more accurate than second or fourth order FD methods.  A 
substantial body of literature has arisen from this pioneering work of 
Orszag - see the review of Orszag and Israeli (11). The extension to 
less restrictive boundary conditions than the original periodic case 
follows with the use of alternative basis functions, such as chebyshev 
polynomials. 

There is, however, a major problem with spectral methods:- their lack of 
flexibility.  The major motivation behind the present work was stated in 
the Introduction to be the need for an accurate algorithm for Eq. (1) 
where the velocity field (u,v) is provided by a two-dimensional 
hydrodynamic model.  Often, the boundaries of such models are extremely 
irregular, since they follow the coastline.  Neither Eulerian FD models 
nor the present Lagrangian scheme have any difficulty in coping with 
this problem. On the oth<»r hand spectral models are totally unable to 
handle this situation; indeed, they are crucially dependent upon a 
regular (usually rectangular) geometry.  A further related constraint is 
the lack of flexibility with respect to imposed boundary conditions. 
Even with regular boundaries, there is no simple way by which spectral 
methods could cope with, say, time-dependent input of C at a given point 
on the boundary, meant to model, for example, a pollutant discharge. 
Accommodation of this situation by Eulerian FD methods is again 
straightforward and will be shown below to be the case for the present 
method. Overall, although it can be demonstrated that spectral methods 
provide superior performance over more commonly used Eulerian FD 
schemes, they can offer little in the way of general application to 
hydrodynamic modelling of two-dimensional mass transport. 

TABLE I 

ACCURACY OF THE VARIOUS NUMERICAL SCHEMES (at t = 2T) 

Scheme Description Spatial 
Order 

Grid 
Dimensions 

C 
max 

C . 
mm 

A2 Arakawa 2nd 17 x 17 0.32 -0.29 
B2 " •• 33 x 33 0.42 -0.24 
A4 " 4th 17 X 17 0.39 -0.24 
B4 " " 33 X 33 0.77 -0.16 
C2 Lax-Wendroff 2nd 17 X 17 0.20 -0.18 
D2 " " 33 X 33 0.36 -0.21 
C4 Gadd (LW) 4th 17 X 17 0.41 -0.17 
D4 •• " 33 X 33 0.76 -0.07 
MC Moving Coords Exact 17 X 17 1.00 0.00 
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MOVING COORDINATE ALGORITHM 

It is widely recognised (6,11) that Lagrangian or moving coordinate 
numerical schemes are the 'natural' method for the solution of the 
advection equation, Eq. (1).  Nevertheless, it would seem that the 
advantages offered by the simplicity of Eulerian schemes have been 
allowed to overshadow their considerable disadvantages as highlighted in 
the previous section.  Lagrangian schemes have been proposed only rarely 
(5), but such work does not appear to have been carried appreciably 
further. 

Lagrangian Solutions of the Advection Equation 

Eq. (1) is mathematically equivalent to: 

(8) dt 

along 

a* dY -«. 
at = u  '  dt = v ' (9) 

This is the Lagrangian scheme that forms the basis of the present work. 
There are complicating factors involved in the use of a Lagrangian 
scheme and these will be described below, but they are often 
over-stated. The almost trivial simplicity of Eq. (8) demands further 
attention.  It simply states the well known physical fact that values of 
C are conserved in time along trajectories or characteristics that are 
the paths of the fluid particles. The actual integration of Eq. (9) can 
be performed by any suitable algorithm for ordinary differential 
equations, once the velocity field is specified.  Standard fourth order 
Runge-Kutta is chosen in the present study. 

The basis of Lagrangian schemes is reviewed by Book and Boris (2).  A 
number of disadvantages of such schemes are stated, chief among which is 
the distortion of an initially uniform grid by a non-uniform velocity 
field.  In specific numerical computations, the flow and hence the grid 
might become so distorted that the 'bookkeeping' involved in keeping 
track of the positions of the individual nodes ultimately becomes 
intractable.  However, this argument loses sight of the fact that the 
very distortion of the grid mirrors the gradients in the flow:  it is in 
regions where either c or the flow varies rapidly that grid points must 
be concentrated in order to effect an accurate solution.  Lagrangian 
schemes adapt to this situation naturally; Eulerian schemes are simply 
unable to do so and their consequent and often severe loss of fidelity 
as the Nyquist limit is approached, can hardly be unexpected. 

previous Lagrangian schemes appear to have concentrated on situations 
where flow variables altered rapidly.  These include flows involving 
shocks and other large gradients in the flow, for which they are ideal 
theoretically, but apparently impractical because of mesh distortion. 
In the present case the proposal is to apply the scheme to mass 
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transport calculations in slowly varying velocity fields.  In this case, 
the computational grid does not become unmanageably distorted.  More 
importantly, however, the gradients of C can be preserved accurately and 
do not suffer from the artificial diffusion and solution oscillations 
associated with Eulerian schemes.  It needs to be recognised that in 
order to solve Eq. (9) for each element of c, the velocity field needs 
to be specified at the actual location of each of these points.  For the 
solid body rotation of the present problem, simple linear interpolation 
will accomplish this exactly. For slowly varying velocities a low order 
bivariate interpolation scheme should suffice.  This contrasts with the 
situation for Eulerian schemes where, on a fixed grid, spatial 
derivatives of C cannot be calculated accurately by low order Taylor 
series, especially in regions of high gradients (6). 

Another problem that has been associated with Lagrangian schemes, and 
which has been believed to be to their detriment is associated with 
inflow and outflow boundaries. At the latter, grid points must leave 
the computational region; at the former, they must be created.  This is 
by no means an insurmountable obstacle and will be discussed below. 

If the solution of the full ADE, Eq. (1) is required, then the question 
incorporating diffusion on a possibly distorted Lagrangian grid, that 
may be both gaining and losing mesh points, is obvious.  A proposed 
treatment of this important extension of the present problem is also 
discussed below. All of the above questions (i.e. method of integration 
of Eq. (9); boundary conditions and the addition or removal of grid 
points; incorporation of the diffusion step) have been addressed by 
Sobey (IS,16) in an algorithm for the solution of the one-dimensional 
ADE.  The results of this work were most encouraging, in terms of the 
high accuracy attained, the relative computational efficiency and the 
inherent flexibility of the scheme, and suggest that the extension of 
this Lagrangian approach to the more important and challenging question 
of two-dimensional advection should be equally worthwhile. 

Sample Computations 

Eqs. (8,9) were solved for the rotating cone problem, with the same 
spatial resolutions employed for the tests of the two main Eulerian 
schemes above.  The results of these computations for the 17 x 17 grid 
after two full rotations are presented in Table I and in Fig. 7. The 
timestep used for these results was 1/16 of the period of rotation. 
This corresponds to a dimensionless timestep of 4.5, compared with 0.5 
used for the above Eulerian schemes.  The error, which can be measured 
by the maximum error in the position of the grid elements at t = 2T was 
negligible (5 x 10  ).  It should be recalled that the range of C is 
always [0,1] with this scheme.  It can be reduced by reducing the 
specified timestep in the solution of Eq. (9), but this increases the 
CP0" time and the present parameters would appear to be satisfactory. 
The actual CPU times for the various schemes are shown in Table II and 
the moving coordinate scheme undoubtedly compares favourably with the 
much less accurate Eulerian methods. Should, on the other hand, the 
timestep be increased, inaccuracy results inevitably.  For example, a 
dimensionless timestep of 18.0 results in errors of order unity in the 
position of grid elements at the boundary of the computational region. 
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Fig. 7 Perspective view of cone at t = 2T with the moving coordinate 
algorithm, with as = 1/8. 

TABLE II 

CPU TIMES FOR VARIOUS INTEGRATION SCHEMES (t = 2T) 

Numerical Scheme Dimensionless Timestep, A CPU(s) 

Arakawa 2nd order 0.5 22.6 
Lax-Wendroff 2nd order 0.5 10.9 
Arakawa 1th order 0.5 32.3 
Gadd <LW) 4th order 0.5 18.3 
Moving Coordinates 4.5 6.7 

K  = v   At/As, with all results for a spatial grid of As = 1/8. 
All computations performed on a DEC 10-21 mainframe computer. 

Boundary Conditions 

The specification of boundary conditions is exactly analagous to the 
treatment used in the method of characteristics, and is detailed in 
Sobey (15).  For the rotating cone problem, C is specified as zero along 
the boundary of the square computational region, but more general 
boundary conditions can just as easily be accommodated.  Outflow 
boundaries present no problem.  If over a given timestep an element of C 
is adjudged to have passed out of the computational region, that element 
is simply removed from further consideration.  At inflow boundaries, 
additional grid points can be created by integration back along the 
characteristics, Eq. (9), to the particular inflow boundary (15). 
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Extension to the Advection-Diffusion Equation 

The essence of this extension is the method of fractional steps employed 
by Sobey (15) for the one-dimensional ADE. Eq. (1) is equivalent to the 
following pair of equations: 

ac   ac   ac , 
— + u"— + v— = o , (10) 
at    ax   ay 

2    2 

it = v <— + —> (11) 

ax   ay 

Addition of Eqs. (10) and (11) gives Eq. (1), the two-dimensional ADE, 
provided (V ,V ,V )    = 2(u,v,v).  Thus, the full ADE can be thought of 
as separate, but simultaneous advection and diffusion steps, but with 
twice the given velocity and diffusion.  Numerically, it is simpler to 
take the two steps as sequential.  The solution of C at nAt is advanced 
to (n+l/2)At by the numerical solution of Eq. (10), the present 
Lagrangian scheme.  The field of C at this intermediate step is then 
used to solve the diffusion (or heat) equation, Eq. (11). 

Because of the Lagrangian solution of the advection equation, this 
second step necessitates the solution of the diffusion equation on a 
non-uniform grid. Sobey (16) has presented an optimised solution of 
this equation in one dimension.  The results obtained were most 
satisfactory, but the extension of this method to two dimensions poses 
additional problems, and a more pragmatic but less sophisticated 
approach may be warranted.  Although Eulerian schemes have been 
effectively rejected for the solution of the advective step, there is no 
reason to do so for the diffusive step.  The solution of Eq. (11) by 
standard low order Taylor series approximations, either FD or FE 
methods, is satisfactory in this case.  Further work is currently being 
pursued on this important aspect of the problem. 

CONCLUSIONS 

The moving coordinate method introduced in the present paper has been 
shown to have much higher accuracy than is available from conventional 
and widely-used Eulerian schemes.  It is simple in both concept and 
implementation,and, in addition, it can be interfaced easily with 
hydrodynamic models used to provide the velocity field. 

Extensions to include the diffusive component of Eq. (1) have to take 
account of the necessarily distorted computational grid.  This has 
already been effected successfully for the one-dimensional equation - 
Refs. (15,16) — and an analogous procedure for the two-dimensional case 
has been proposed. With the slowly-varying velocity fields (e.g. 
continental 3helf circulation) for which the method is intended, the 
mesh will distort, but not unmanageably so.  Strategies have also been 
discussed for the removal or addition of mesh points, should they become 
too sparse or concentrated.  It should be recalled however, that such 



MASS TRANSPORT MODELING 2447 

distortion mirrors the background gradients and gives a Lagrangian 
scheme natural advantages over any Eulerian approach. Overall, the 
present approach is meant to provide the first but also most important 
step towards the development of accurate and reliable methods for the 
solution of ADE problems in actual physical environments.  Advection- 
dominated flows are the rule rather than the exception, yet too often 
the veracity of available solutions would appear to be compromised by an 
inadequate appreciation of the limitations of available numerical 
methods.  A successful solution of the problem, based on the above 
principles, provides a resolution of this impasse. 
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