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Abstract 

This paper describes the development of a model for the shoaling and re- 
fraction of an incident directional spectrum over beach topography. The present 
model is limited to topography which varies only in the on- offshore direction, 
but no restriction is made on allowed angles of incidence with respect to the 
shore-normal direction. The model is verified in comparison to laboratory data 
for Mach reflection of cnoidal waves from a vertical plane wall. It is shown that 
the model provides a more accurate representation of the evolving wave field than 
does an earlier parabolic approximation, using the same laboratory data. 

Introduction 

As ocean surface waves propagate towards shore, they pass through a shoaling 
zone prior to breaking in which nonlinear interactions become strong and can 
significantly modify the wave train. This zone is characterized by weak frequency 
dispersion, since waves become relatively long compared to local water depth. In 
addition, the weak dependence on wavelength in the wave phase speed leads to 
the occurrence of strong nonlinear interactions at second-order in wave height. 
The combined effects of weak dispersion and nonlinearity may be modelled by 
the Boussinesq equations, which serve as a reasonably accurate general purpose 
model for the domain in question as long as waves do not become too high. 

Since the area being studied here can be quite extensive in comparison to the 
characteristic wavelength of the waves being modelled, the choice of an efficient 
numerical solution technique is crucial. The Boussinesq equations may be suc- 
cessfully solved by time-stepping techniques, but these methods are too inefficient 
for the spatial and temporal spans being considered in applications to an open 
coastal zone. Instead, various prior studies have found that it is efficient to de- 
compose the time-dependent wave train into a stack of frequency components by 
Fourier decomposition, and then solve for the spatial evolution of each frequency 
mode. This is exactly the same kind of manipulation that is done in Fourier 
analysis of data, and is valid as long as the wave train satisfies the requirements 
for the transform to exist. In field applications, the Fourier decomposition into 
a finite set of discrete frequencies under the assumption of periodicity is exactly 
the same as applying an FFT to data.   Assumptions about stationarity of the 
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process are implicit and should be kept in mind when determining if the present 
approach is useful. 

The solution for the spatial behavior of each frequency component is itself in- 
volved. A number of studies (Freilich and Guza, 1984; Elgar and Guza, 1985 and 
1986 and subsequent contributions) have considered only the shoreward propaga- 
tion in one space dimension, and have shown that the resulting one-dimensional, 
first-order coupled mode equations are capable of modelling the evolution of the 
spectrum and bispectrum of shoaling waves, as verified by comparison with field 
measurements. Liu, Yoon and Kirby (1985; referred to here as LYK) alternately 
proposed a parabolic model for the shoreward propagation of each frequency 
component over two-dimensional topography, and verified the method in com- 
parison to a laboratory experiment on the focussing of periodic long waves by 
topography. The parabolic model approach has also been used to study a field 
application (Freilich et al, 1990), with successful results. 

In this study, we derive a model for the evolution of each frequency mode in 
two dimensions, based on the angular spectrum approach. This approach has 
been applied to the study of intermediate depth waves by Dalrymple and Kirby 
(1988) and Dalrymple et al (1989). For the case of linear theory, the angular 
spectrum is usually posed as the continuous Fourier transform of the wave field 
in the longshore direction. Here, in keeping with the mental framework associ- 
ated with the discrete transforms being employed in time, we impose longshore 
periodicity as well and obtain a discrete spectrum in longshore wavenumber. This 
frequency - longshore wavenumber spectrum is subsequently referred to as the 
discrete angular spectrum. 

The model developed here is applicable both to simple periodic waves gener- 
ated in the laboratory environment and to irregular, "random " waves in the field 
environment. In this paper, we concentrate on a model verification conducted 
from the first viewpoint. The model is tested against laboratory data obtained 
by Hammack, Scheffner and Segur (1990), who investigated the development of 
a Mach stem arising during the glancing-angle reflection of a cnoidal wave by a 
vertical wall. Results obtained using the parabolic equation model described in 
LYK are also compared to data. (The case of Mach reflection of a cnoidal wave 
has been studied using the parabolic approximation by Yoon and Liu (1989); 
however, no comparison to data was provided in that study.) The spectral model 
is shown to give a more accurate representation of the data than the parabolic 
model over the entire range of angles of incidence considered. 

The Boussinesq Equation Model 

We first establish the form of a model for waves in a laterally unrestricted 
domain. A Cartesian coordinate system is adopted which has x pointed in the 
onshore direction and y pointing alongshore. Depth is assumed to vary as h(x) 
only. We take as a starting point the variable depth Boussinesq equations as 
given by Peregrine (1967): 

Vt + V • (hu) + (e)V • (TJVL) = 0 (1) 

u, + (e)u • Vu + gVr, = (M*){±V(V • (Au()) - j V(V • u«)} (2) 

Here, r\ is the surface displacement and u is the horizontal wave- induced velocity. 
The equations are kept in dimensional form; the scaling parameters e = max(t))/i 
for nonlinearity and /i2 — oj2h/g for weak dispersion are present only schemati- 
cally and will be subsequently dropped. We will assume that either bottom slope 
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or the amplitude of bottom features (as scaled by water depth) are also small and 
hence the model will be developed to leading order in nonlinearity, dispersion, 
and domain inhomogeneity. This leads to immediate neglect of bottom slope ef- 
fects in the dispersive terms of (2). Using the linear portion of (1), we may then 
write (2) in the reduced form 

u, + u-Vu + SV^ + -Vritt = 0. (3) 
o 

We now make the following assumptions. First, the model will be applied to 
time-periodic wave trains, where periodicity is in the sense of either a regular 
wave train, or of a discrete FFT over a finite length of sampled data. Secondly, 
the wave field will be assumed to be periodic in the transverse y direction. This 
corresponds again to a fixed longshore wavelength in the regular wave case, or to 
periodicity over a long spatial interval in the spectral sense. 

The governing equations are first split into coupled elliptic models for separate 
harmonic components. Following LYK, we write the surface displacement and 
velocity as 

r,= f:^^e—' + c.c. (4) 
n=0 ^ 

u=^U"(^^e-'""' + C.c. (5) 
»i=o       ^ 

Substitution of (4) and (5) in (1) and (3) and subsequent elimination of the 
velocity leads to the following model equation for the T)n in the horizontal plane: 

»Vi|„ + V.(G,Vi|n)+[d4 = 0;      n = l,...,JV (6) 

Here, [n.!.t]„ denotes the nonlinear interactions with other discrete frequency 
components which are sorted by means of the rules for triad interactions applied 
to the time dependence. (Omitted details may be found in the more complete 
paper; Kirby (1990).) The mode n = 0 corresponding to the steady, wave- 
induced setdown is neglected since it is at most second order in the largest wave 
amplitudes present (see LYK). Also, 

Gn(x) = gh(x) - l-nWh\x). (7) 

We now apply a spectral transform to the y dependence of the wavefield, 
assuming propagation is to be considered in the on-offshore (±x) direction. We 
consider here the case of an unbounded lateral domain and a wavefield which is 
periodic over the basic interval L. We then represent r]n(x,y) as 

M 

»?»(*.»)= £ C(*KmAov (8) 

where 

Ao = f • (9) 
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Substituting (8) in (6) and neglecting x - derivatives of small terms in Gn then 
leads to a set of coupled second-order ODE's for the rj•, given by 

^C + yC + (infvZ + \mWQkWr,• + ~[n.U.]- = 0; 

n = l,...,N; m--M,...,M. (10) 

where [n.l.t.]• now represents triad interactions satisfying resonance conditions 
in t and y. Here, k is the wavenumber determined by the lowest order dispersion 
relation 

w2=gk2h. (11) 

Also, 
(7„m)2 = n2P-m2Ag (12) 

For fixed n, k, Ao, large values of m will make 7• imaginary, which corresponds 
to modes which are exponential rather than oscillatory in x in the linear approx- 
imation. In the linear case, the presence of these modes in the initial conditions 
would be interpreted in the same light as the presence of evanescent modes in 
the general wavemaker problem (see Dalrymple and Kirby, 1988). However, the 
interpretation in the case of possible nonlinear forcing of the offshore portion of 
trapped modes in the nearshore region is non-trivial and will need to be con- 
sidered carefully in applications where the inclusion of this effect is desired. In 
addition, nonlinearity could force the propagation of modes that would not be 
present in a linearized wave field, and which could affect a detailed representation 
of an individual wave. At present, the range of M at each value of n may be 
restricted to Mn < nkf\0 in order to eliminate forcing of these modes arbitrarily. 

Shoaling Waves 

Based on the linear, nondispersive portion of the model (10), we assume that 
the incident wave may be written in the form 

iC(s) = A?(x)ei»f'*?*' (13) 

where it is assumed that the x dependence of A, k and 7 is on a slow scale of 
0(e), and where 

7^d-0^)r2=S (u) 
(where the positive root is taken). The amplitudes A represent the discrete angu- 
lar spectrum being considered here, and are allowed to vary owing to refraction, 
shoaling, dispersion and nonlinear interaction. (It would be possible to absorb 
shoaling and refraction effects by the use of the usual linear refraction formulae; 
this step is not taken here.) Substitution of (13) in (10) leads to the spectral 
model for incident waves, given by 

InAZ + {J^A: - \inWA• + +^ jg g Q"A!A:_7e'f<^ 

+2 if E KfArA^i^A = 0; 
/=i P=P3 ) 

n = l,...,N; m = -M„,...,M„.(15) 
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Here, (•)* denotes the complex conjugate. The limits of summation P\ — Pi are 
determined by the range of allowed modes taking part in each interaction. The 
interaction coefficients I and J are given by 

47 = 1 + W7r-7 + f^ff(j)2]-[i + (^)2(j)2+        (16) 

(ifl+{n-i)^:n\ 
n2 J 

JZf = C-7- (") 
The phase arguments 0 and T represent the basic mismatch in the x direction 
of the triads chosen based on perfect matching in y and i. Generally, the only 
components which experience complete resonance in the long wave limit must 
have parallel propagation directions; all obliquely interacting components are 
somewhat detuned. The phase arguments are given by 

&:f   =   lkjf + (n-l)kjZ7-nk^ (18) 
TmjP    =    em,-,, (19) 

The spectral model (15) is a set of coupled first order ODE's which are solv- 
able by standard techniques. Results presented in sections 4 and 5 were obtained 
using a standard 4th-order Runge-Kutta scheme with fixed step size and no error 
checking. Presently, extensions of the model using error control and adaptive 
step size are being tested and will likely be the vehicle for further field testing of 
the model beyond the scope of the present study. 

Comparison with Data and a Parabolic Model Approximation 

In order to verify the basic computational model provided by (15) and to test 
whether the present angular spectrum provides a more accurate representation 
of the wave field relative to earlier parabolic models (LYK; Yoon and Liu, 1989), 
we have compared model predictions to laboratory data obtained by Hammack 
et al (1990) for the case of glancing, or Mach, reflection of a cnoidal wave by a 
vertical wall. The experimental tests were conducted using the directional wave 
maker at the Coastal Engineering Research Center, Vicksburg, MS. A prior use 
of this facility to study the properties of intersecting cnoidal waves is described 
in Hammack et al (1989), referred to here as HSS. 

Layout of Experimental Facility 

For the tests considered here, the wave basin was operated with a water depth 
of 20cm in a constant depth region extending 12.55m in front of the wavemaker, 
after which a beach with 1:30 slope provided an efficient wave absorber giving 
little reflection. The basin floor was leveled to a tolerance of 0.01/f in order to 
remove some of the spatial irregularity of the waves reported in HSS resulting 
from local refraction effects. For the Mach stem tests, two parallel false walls 
were installed perpendicular to the wavemaker axis in order to provide a closed 
channel. The channel walls were situated 13.26m apart, which fixes the width of 
the numerical domain to be considered. 

Instrumentation and data aquisition are described in HSS, and readers are 
referred there for greater detail. In the present tests, an array of 18 wave gages 
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Figure 1: Basin configuration, Mach reflection experiments 

were installed in the basin as shown in Figure 1. In this figure, the directional 
wavemaker occupies the y-axia, and the channel sidewalls lie along the z-axis and 
the line y = —13.26m. The positions of the gages are given in Table 1. The linear 
gage array 13 — 9 — 8 — 7 — 6 — 4 — 3 — 2 — 1 provides a transect perpendicular to 
the reflecting sidewall which allows a determination of the width and structure 
of the Mach stem and additional crests in the reflection pattern. This array is 
used to provide most of the information described below. An additional array 
18 — 17—16 — 15 — 14 — 13 — 5 provides measurements of the evolution of the 
reflected stem wave along the wall. For each gage, data consists of a time series 
of 1250 points with a sampling rate of 25Hz. 

gage x(m) y(m) gage x(m) y(m) gage x(m) y(m) 
1 11 -5 7 11 -1.5 13 11 -0.07 
2 11 -4 8 11 -1 14 10 -0.07 
3 11 -3 9 11 -0.5 15 8 -0.07 
4 11 -2.5 10 8 -1 16 6 -0.07 
5 12 -0.07 11 6 -1 17 4 -0.07 
6 11 -2 12 10 -1 18 2 -0.07 

Table 1: Wave gage positions in Mach reflection experiments 
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test CR15 CR22 CR30 CR38 CR48 CR58 
a 14.5 22.0 30.0 38.5 47.5 57.6 

P 10.13 15.48 21.34 27.84 35.18 44.32 

Table 2: Paddle phase angles and directed wave angles; Mach reflection experi- 
ments 

Specification of the Incident Wave 

The generation of oblique cnoidal waves using the directional wavemaker has 
been described in HSS. In the present laboratory tests, waves were initially spec- 
ified as having a wavelength of 1m and a crest elevation 4cm above mean water 
level. The algorithms given by Goring and Raichlen (1980) were used to generate 
a time series of paddle displacement corresponding to one- dimensional genera- 
tion. Oblique waves were then generated by phase lagging adjacent paddles. The 
relation between paddle phase shift angle P and directed wave angle a is given 
by 

P = arcsin(aL/360W) (20) 

where L is the wave length and W = 45cm is the individual paddle width. Tests 
were conducted for six paddle phase lags, and are denoted CR:ra:0204, where xx 
denotes paddle phase lag. Note that (48) corrects a typographic error appearing 
in HSS. Table 2 gives a list of a and P values for the six tests. 

Prior to running the Mach reflection experiments, the nominally 4cm high 
wave was generated in the normally incident direction (traveling parallel to side- 
walls) in order to study its characteristics. It was found that the wave actually 
had a crest elevation close to 3.3cm above mean water level. This value was used 
to specify incident waves in the numerical computation, along with a wave period 
of 1.478s as specified by KdV cnoidal wave theory. We note that it is uncertain 
whether the value of 3.3cm was invariant under changes of angle of incidence in 
the laboratory experiment. Variation of this quantity would add an untraceable 
source of error in model-data comparison. 

The computed wave angle and the Fourier coefficients for the input cnoidal 
wave were used to compute the surface displacement for oblique cnoidal waves 
along the boundary x = Orn corresponding to the wavemaker. For parabolic 
model calculations, information in the range —13.26m <y< 0m was used to start 
the computation. The model was run with reflective sidewalls at y = 0, —13.26m. 
For the spectral model, a periodic interval was constructed by using a mirror 
image about y — 0m; the computational domain thus corresponds to the region 
— 13.26m < y < 13.26m. The computed waveform was then Fourier transformed 
over this interval and the resulting frequency-wavenumber spectrum was fed into 
the spectral model. (It is noted that the problem as stated could be handled 
directly by means of a cosine transform over the true model domain; this was 
not done because of the reprogramming of the basic model that would have been 
required.) 

For the examples shown here, the parabolic model was run with a grid spac- 
ing Aa; = Ay = 0.0625m, and N = 9 frequency components were used. Tests 
were performed for two cases for both half the grid spacing and twice the number 
of harmonics to insure that convergence was adequate for the parameters finally 
used. In the spectral model, we used N = 9 and M = 64. The large value of M 
insures that all freely propagating modes of the solution are retained for the high- 
est harmonic considered. The forward grid space step was also Ax = 0.0625m. 
Again, these parameters were found to give sufficient convergence of solutions 
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when compared to runs with smaller grid steps and more retained frequency 
components. 

Results 

Results of model calculations are presented here in two forms: gray level 
contour plots of instantaneous surface over the model basin, and time series com- 
puted from model output and compared to experimental data. The gray level 
plots are actually of the quantity —drj/dx, and the pictures thus mimic the visual 
image that would be obtained in an overhead photograph resulting from lighting 
at a low angle from the direction of the wavemaker. (This is similar to the pho- 
tographic arrangement in HSS). In all cases, the gray level plots from parabolic 
model computations are similar to those from spectral model computations, and 
only spectral model results are shown. Figure 2 presents results for the test 
CR150204, which clearly shows the evolution of a wide Mach stem wave along 
the reflecting boundary. In contrast, the wave field for test CR580204, where the 
angle of incidence is about 45°, exhibits almost a regular (i.e., linear) reflection 
pattern consisting of superposed waves (Figure 3). 

13.25 

x(m) 

y(m) -13.25 

Figure 2: Predicted wave field, test CR150204. Spectral model 

In order to compare time series from experiment and model calculations, the 
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Figure 3: Predicted wave field, test CR580204. Spectral model 

following procedure is used. First, after allowing some time for nearly periodic 
motion to be established in the experiment, a reference time t0 is established at 
the position of a wave crest at gage 13 (x = 11m,?/ = —0.07m). This start time 
is used for all other gages as well, in order to maintain synchronization. Then, a 
start time is also established for the model- predicted time series by identifying 
a crest at model gage 13. Synchronization between model and data time series 
is thus based on correlating the series at a gage location, rather than (more cor- 
rectly) correlating at the wavemaker. This step is necessary since the wavemaker 
control is not available and since absolute time in the model-constructed time 
series is arbitrary. 

After determining the synchronous start times for model and data at gage 
13, time series were plotted for the transect along the wall ( gages 18-17-16-15- 
14-13-5) and perpendicular to the wall (gages 13-9-8-7-6-4-3-2-1). Aside from 
the presence of experimental errors, a correct model result would be indicated 
by complete agreement between model and data time series at each gage. As 
examples, two periods of time series for the perpendicular transect are shown in 
Figure 4 for the spectral model predictions for CR150204. The plot shows a stem 
developed near the wall in the area spanned by gages 13-9-8-7, beyond which 
there is a clear phase lead at each subsequent gage, indicating the approach of 
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Figure 4: Measured and predicted time series for test CR150204, perpendicular 
transect.  , model; - — -, data. Spectral model 

the incident wave at a small angle of incidence. In this plot, model predictions 
are indicated by solid lines and experimental data by dashed lines. At the op- 
posite extreme, Figure 5 shows spectral model predictions and data for the case 
CR580204. This figure indicates the structure of a short crested wave field, with 
one complete diamond over the range of gages 13-9-8-7-6-4-3, whereas the sig- 
nal in gages 3-2-1 indicating a strong progressive phase lag, corresponding to a 
wave travelling away from the wall at close to 45°. The structure of the plots in 
Figures 4 and 5 may be further clarified by comparison with the surface plots in 
Figures 2 and 3, respectively. 

In order to quantify the comparison between model predictions and measure- 
ments, an rms error measure was constructed. This measure e is given by 

\ 
(21) 

for each gage, where the normalization of the mean square error is with respect 
to the true (data) standard deviation. A composite value e for each angle or test 
is constructed from the ratio of the rms error for all points divided by the total 
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Figure 5: Measured and predicted time series for test CR580204, perpendicular 
transect.  , model; , data. Spectral model 

standard deviation for all points. Table 3 gives the computed error estimates 
for all tests, and Figure 6 shows the composite error as a function of incidence 
angle for the two models. In this case; the trend towards increasing error with 
increasing angle is clear in the parabolic model results. The spectral model also 
shows an increasing trend in this case, which would not necessarily be expected. 

One possible reason for an increase in error in the spectral model as wave 
angle becomes large rests in the fact that the reflected wave crests at the wall 
and in the short-crested wave pattern away from the wall result from the inter- 
action between waves that are colliding head on to the same extent as they are 
interacting colinearly. Tests and analysis of head on collision and vertical wall 
reflection of solitary waves have indicated that the leading order theory (as in 
the Boussinesq model employed here) is not capable of predicting the height of 
the runup or maximum elevation, or the phase lag associated with the opposite- 
going interaction. See Su and Mirie (1980) for an example of this type of analysis. 
Effects of this nature may be present in the experiments being considered here. 
It is also possible that the increase in error with incidence angle in the spectral 
model is due to a change in the incident wave height with angle, as mentioned 
above. This error, if present, would tend to increase the wave height with angle, 
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spectral model 
gage 13 9 8 7 6 4 3 2 1 average 
CR15 .089 .109 .078 .076 .177 .296 .386 .349 .285 .193 
CR22 .228 .292 .281 .305 .326 .496 .346 .148 .526 .296 
CR30 .208 .234 .168 .214 1.250 .306 .317 .124 .196 .250 
CR38 .276 .535 .578 1.060 .206 .275 .442 .520 .190 .383 
CR48 .128 .137 .636 .206 .216 .524 .953 .162 .124 .273 
CR58 .194 .277 .479 .293 .540 .717 .631 1.280 .612 .540 

parabolic model 
gage 13 9 8 7 6 4 3 2 1 average 
CR15 .113 .132 .093 .103 .327 .600 .713 .503 .422 .319 
CR22 .191 .326 .407 .556 .916 1.240 .678 .370 1.020 .509 
CR30 .242 .225 .418 .597 1.975 .386 .231 .690 .333 .365 
CR38 .211 .324 .706 1.936 .430 .550 .612 .713 .489 .494 
CR48 .513 .743 1.911 .473 .398 .799 1.425 .476 .598 .599 
CR58 .261 .534 1.099 .969 1.611 .630 .672 .697 .515 .689 

Table 3: RMS error coefficients e for spectral and parabolic model runs 

contributing to the deviation between model results and data in the expected way. 

Discussion 

We have described the development of a solution technique for the Boussinesq 
model of long waves, based on a discrete representation of the angular spectrum 
for waves incident towards shore from the ocean. The model is similar in intent 
to the parabolic model developed earlier by LYK, with the exception that the 
present model does not impose a restriction on the range of directions that can 
be accurately modelled. This advantage is counterbalanced (at this stage of de- 
velopment) by the need to impose periodic boundary conditions on the modelled 
problem. This restriction must be alleviated before the various representations of 
angular spectrum models (present model; Dalrymple and Kirby, 1988; Dalrymple 
et al, 1989 ) become generally applicable as coastal wave models. 

Comparison of the present model, a parabolic model and laboratory data 
indicates that differences do occur between predictions of a small-angle approxi- 
mation and the fully directional expansion employed here, and that the deviation 
is apparent even at small angles of incidence. This result indicates that the fur- 
ther development of the angular spectrum model is worth pursuing as a means 
of providing accurate prediction of coastal wave fields. The first extension of the 
present model to include weak longshore topographic variation and on-offshore 
reflection is presently underway and will be described shortly. 
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