
CHAPTER 10 

NUMERICAL SIMULATION OF 

NONLINEAR WAVE TRANSFORMATION OVER A SUBMERGED PLATE 

Xiping Yu * Masahiko Isobe * Akira Watanabe * 

Abstract 

The Euler equation of fluid motion is integrated in the vertical direction by 

assuming a hyperbolic cosine distribution of pressure, As a result, quasi-linear 

hyperbolic equations governing the wave motion above a solid bed are obtained. 

The equations are then applied to describing the wave transformation over a 

submerged plate. 

An algorithm based on the method of characteristics is developed in the nu- 

merical computation. The wave reflection and transmission coefficients computed 

under various conditions are compared with the experimental data, and the over- 

all agreement is found to be fairly satisfactory. 

1    INTRODUCTION 

Persistent efforts have been devoted to developing efficient and economical breakwa- 

ters. The efforts are still needed since new requirements are constantly brought up in 

the course of further developing coastal zones. As construction sites advanced offshore 

further and further and the water depth to be dealt with becomes larger and larger, 

fundamental changes take place even in the design concept of breakwaters. Among 

many initiatives, it is found that some simple structures are very promising to lower 

the design wave height for main structures and thus to achieve an overall optimum 

of the project concerned, or even to stand alone to create a relatively calm area. A 

submerged horizontal or slightly inclined plate represents one example of such new 

simple types of breakwaters. 
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When incident waves propagate over a submerged plate, part of the wave energy 

is reflected because of the interaction between the flows above and below the plate. 

Under certain conditions waves even break above the plate and the energy is thus 

considerably dissipated. It is by virtue of the reflection and dissipation that a sub- 

merged plate functions as a breakwater. However, unlike conventional breakwater, the 

effectiveness of the submerged plate is very sensitive to the incident wave conditions 

as well as the dimensions and the placement of the plate. Proper design of the sub- 

merged plate breakwaters requires reliable evaluation of the wave reflection and energy 

dissipation as well as the associated wave transmission under various conditions. 

The wave deformation due to a plate has been treated in several previous studies. 

For example, analytical solution has been obtained for horizontal plate under long 

wave condition (Hattori and Matsumoto, 1977), and a numerical model based on the 

time-dependent mild slope equation is also available (Aoyama et al., 1988). 

Most of the previous studies are based on the linear wave theory. To ensure the 

effectiveness, however, the submerged depth of the plate should not be too large, 

and then the wave nonlinearity becomes significant over the plate. Furthermore, wave 

breaking, a typical nonlinear phenomenon, is necessary to serve as an energy dissipator 

to minimize the wave transmission and reflection. Simulation of nonlinear waves is 

thus needed. In the present study a set of wave equations including nonlinear terms 

is derived to describe the wave deformation over a submerged plate. The nonlinear 

equations are solved numerically by the method of finite characteristics. Numerical 

results are compared with experimental data. 

2    GOVERNING EQUATION OF WAVE MOTION 

Wave motion is fundamentally governed by the following continuity equation and 

Euler equations. 
du3      dw _ 

dxj      dz 

du,       d  ,       ,       d .      %       d /px 

• + —(w»j) + ^z(ww) + TTzO + 9 = ° (3) 
dw d , . d , N d ,p. 
-rrr + ^— {wu3) + — (ww) + ^-(-) 
dt      dxj dz dz  p 

where, u3 (j = 1,2) and w are, respectively, the horizontal and vertical components 

of the velocity, p the pressure, p the fluid density, g the gravitational acceleration, XJ 

and z the horizontal and vertical coordinates, and t the time. Through denoting the 
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water surface elevation by rj and the still water depth by h, the kinematic boundary 

conditions on the free surface as well as at the solid bottom are expressed by 

„•— + w° = 0 (5, 

in which the superscript / and b represent the values at free surface and bottom, 

respectively. 

It is known that the small amplitude wave theory gives the pressure as 

p _ _ coshkM(h + z) 

p cosh ku{h + rj) 

where a modification has been made to assure that the pressure becomes exactly zero 

on the free surface, which does not violate the small amplitude assumption. The 

quantity ku in Eq. (6) is the modified wave number determined by the following 

modified dispersion relation: 

cu = T- tMlh ku(h + v) (7) 

in which CM = ff/^M is tne modified wave celerity, and a the angular frequency. 

It has been shown that the small amplitude wave theory is adequate up to the loca- 

tion near the breaking point (e.g., Isobe, 1985). Hence Eq. (6) is regarded as valid in 

the shoaling zone. In the surf zone, while the small amplitude wave theory is no longer 

valid, the assumption of hydrostatic pressure distribution may be acceptable. Since 

Eq. (6) yields the hydrostatic pressure distribution when the water depth becomes 

small, it may still be a rather good approximation at this situation. Thus Eq. (6) is 

not erroneous except for a narrow region around the breaking point. 

With the assumption of the pressure distribution expressed by Eq. (6), Eqs. (1) and 

(2) can be integrated with respect to z from the bottom (z = —h) to the free surface 

(z = rf). By recognizing that rj is a function of x} and t, and h a function of x3 only, 

and introducing the boundary conditions (4) and (5), the continuity equation (1) is 

integrated as 

| + |^ = 0 (8) 
at      axj 

where, q3 = j\ujdz is defined as the component of fluid discharge in Xj direction. 

In a similar way, the integrated momentum equation (9) can be obtained by further 

considering that the pressure on the free surface vanishes. 

%   ,    9        q,qj d      2 dri gr/ dh 

~m + dx~{()hT^ + dx-{CMv)~9Vdx-r coshkM(h + v)dx- = 0      (9) 
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where /? is the momentum factor. By assuming the vertical distribution of it; as: 

Ui = uftxj, 2)cosh kM(h -f z) (10) 

fi can be derived as 

P = nua (11) 

with 

a =—-2  (12) 
°M 

«     - *ri   .       2fcM(ft + »?)     1 ,    . 
nM-2[1+sinh2M^ + '?)1 (    } 

Equations (8) and (9) govern the wave motion over a solid bottom. The equations 

are mathematically termed as quasi-linear hyperbolic differential equations, which 

have been extensively studied (Courant and Hilbert, 1962). Among many of the 

properties discovered, it is recognized that discontinuities are included in the solutions 

under certain conditions even if the initial and boundary conditions are continuous 

functions. The discontinuity is related to the breaking in wave dynamics (Stoker, 

1957). 

Since Eq. (9) is derived from the basic equations of ideal fluid flow, the momentum 

loss is neglected. When waves propagate into the surf zone, the energy loss due 

to nonlinearity may become remarkable. However, the mechanical energy loss does 

not always mean a noticeable momentum loss. In some cases, the energy loss is 

significant but the momentum loss may be negligible, as stated in many textbooks 

about hydraulic jump (e.g., Rouse, 1946). In the present study we use Eq. (9) and 

neglect the momentum loss. 

Since the pressure distribution given by Eq. (6) is assumed, only progressive waves 

are considered. Complete or partial standing waves, which are the superposition of two 

wave trains propagating in the opposite directions, can also be dealt with. However, 

if there are some rapid changes in boundary conditions, which may cause scattering 

waves, the validity of Eq. (9) should be reexamined. 

3    FORMULATION OF WAVE MOTION OVER SUB- 

MERGED PLATE 

3.1    Basic equations 

In the following we deal with a vertically two-dimensional wave field in the x-z plane. 

As shown in Figure 1, the flow field is divided into the four regions: (i) the offshore 
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S.W.L. 

REFLECTION REGION 

(i) 

TRANSMISSION REGION 

(Hi) 

Figure 1: Definition sketch of submerged plate 

or reflection region, (ii) the region above the plate, (iii) the onshore or transmission 

region, and (iv) the region under the plate. The flow in the regions (i), (ii) and (iii) 

can be described by the one-dimensional form of Eqs. (8) and (9). 

In order to simplify the equations, we assume that the bottom slope is mild as 

. dh        .dri 
(14) 

Furthermore, we neglect the terms originating from the nonlinearity but vanishing 

when the water depth becomes small, because the nonlinearity is considered to become 

significant only when the water depth is small. Then Eqs. (8) and (9) reduce to 

dri     dq 
—-+ — = 0 
dt      dx 

ir + 2/^ir + (cM-/^2)^ = o 

(15) 

(16) 
dq dq 
_ + 2/J„_,v„M     „.,dx 

where v — g/(/i + 77) is the sectional mean velocity. 

To derive the equation governing the flow under the plate, the procedure for deriving 

Eqs. (8) and (9) is followed. If the slope of the plate is small enough, it is expected 

that the hydrostatic pressure distribution may be assumed in the region (iv) because 

the flow can reasonably be treated as nearly parallel. Hence, 

V _      Pi 
9      p(h - d) •gz (17) 

where Pj is the total dynamic pressure force on a vertical cross section below the plate, 

h and d are the total water depth and the depth above the plate, respectively. Eqs. (1), 

(2) and (5) are still valid, whereas the boundary condition on the plate becomes 

„dd 

dx 
+ wv = 0 (18) 
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where the superscript p denotes the values on the surface of the plate. Substituting 

Eq. (17) into Eq. (2) and then integrating Eqs. (1) and (2) from z = —h to z = — d 

under the boundary conditions (5) and (18), we have 

q — const. (19) 

g+f(/-.) + ^ = 0 (20) 
at     ox  h — d       ox 

Since q is only a function of t, Eq. (20) can be integrated with respect to x from 

one end of the plate to the other.   Therefore, the differential equation for the fluid 

discharge under the plate is finally given as: 

2l+   2 taJ1 e pdd - Pdu _ Q (21, 
dt     q {h - dd)(h ~ du)        Icose (    ' 

where I and 8 are the length and slope angle of the plate and the subscript u and d 

represent the values at the upstream and downstream ends of the plate, respectively. 

3.2    Boundary Conditions 

At the offshore lateral boundary of the reflection region (i), waves are assumed to be 

described by the superposition of the incident and reflected waves as 

V = m(z - Cht) + riR(x + Cht) (22) 

where the subscripts I and R represent, respectively, the incident and reflected waves; 

C/j is the wave celerity in the region of constant water depth h. By differentiating r/ 

with respect to t and x, it is found that 

dv     r dr,        dm 
Tt~ChTx~2^ (23) 

Equation (23) gives the offshore lateral boundary condition. In a similar way, at the 

onshore lateral boundary of the region (iii), it can be assumed that 

r, = m(x - Cht) (24) 

where the subscript T represents the transmitted waves. The onshore lateral boundary 

condition can thus be obtained as: 

Generally, under the boundary conditions periodic in time, a solution of hyperbolic 

differential equation consists of two parts:  one is the contribution of the boundary 
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conditions and thus also periodic; the other is the contribution of the initial condition 

which decays rapidly with time if any damping factor is included. In many practical 

problems of coastal engineering, only the periodic solution is important. As a result, it 

allows the initial conditions to be arbitrarily specified so far as they will become trivial 

after several wave period. In the present case, however, the boundary conditions are 

given in terms of differential equations. Hence, arbitrary constants involved should 

be determined so as to make the solution unique. Since the constants may implicitly 

be specified in the initial conditions of q and t], there should be certain restriction on 

the specification of q and rj at the initial step. However, the state of still water can 

be utilized as reasonable initial conditions if we do not consider any steady current. 

The matching boundary conditions at both ends of the plate are 

Vh = Va (26) 

qh = qa + ib (27) 

*db    *dh        "da (o&\ 

p ~      P 

where the subscripts h, a and 6 represent, respectively, the values at the region of 

constant water depth, above and below the plate. It is obvious that Eqs. (26), (27) 

and (28) physically imply the continuity of the free surface, the conservation of mass 

and the balance of the pressure force. The substitution of Eq. (6) into Eq. (28) gives 

^f = (C2
Mh - C&Jv* (29) 

4    METHOD OF FINITE CHARACTERISTICS 

The method of characteristics has been developed as an effective technique to solve 

quasi-linear hyperbolic differential equations. By introducing two families of char- 

acteristic curves in the x-t plane, partial differential equations are replaced by the 

characteristic equations including only ordinary derivatives along the characteristic 

curves. 

Equations (15) and (16) can be rewritten in a matrix form as: 

L   n 

dt{ q 

0 1 

•'M ' C&-0V2    2f}v £fl- (») 
It has been shown that the slopes of the characteristic curves are equal to the two 

eigenvalues of the coefficient matrix (Abbott, 1979). Thus, 
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dx 
dt 

/?« ± ^0?-1)«2 +Cft 

=   U (31) 

The characteristic equations are, then 

Several numerical techniques for solving the characteristic equations are available 

(Lin, 1952; Freemman and LeMehaute, 1964; Abbott and Verwey, 1970). Here a 

scheme, called the method of finite characteristics, is introduced through the improve- 

ment of Lin's method. The improvement, which is to include some higher order terms 

in the computation, has been found necessary because the ratio of the grid size to 

the wavelength in the computation of sea waves can not be as small as that for flood 

waves, owing to the restriction of the computational time. 

The method of finite characteristics can be explained by Figure 2. Two finite charac- 

(n+l)A< 

R     ;B 

(m-l)Ai       mAi   (m+l)Ai 

Figure 2: Definition sketch for FCM 

teristic curves are issued backward from the computation point F toward the previous 

time step. The finite characteristic curves are approximated by straight lines with the 

slope determined through the algorithmic form of Eq. (31) 

xF~xL = £+,LAi (33) 

xF~xR = (-iRAt (34) 

where the subscripts F, L and R express the values at the points F, L and R. £+?£, 

and £__# are computed through linear interpolation of the values at the grid points 

A, B and C as follows: 

? + ,£ - ?+,C ^ (K + ,A ~ £+,c) (35) 
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XR-XC, 
Z-.R = C-,C +  7 (C-,fl - <-,c) (36) 

By substituting Eqs. (35) and (36) into Eqs. (33) and (34), the positions XL and xR 

are explicitly expressed as: 

XL - XF • 

XR~XF - 

(37) 

(38) 

Provided that the positions of the points L and R are determined, the values of ij and 

q at these points are computed through the following second order interpolation. 

/    V   \ 

\t±    'L-,R 

+ 

( n \ 

( V ) 

t n ) 
g 

U± )c 

(xL.R - xc){xL]R - ZB) 

2Az2 

(XL;R ~ XA)(xL,R - XB) 

Ax2 

(XL.R~ XA){xL.R-Xg) 
2Az2 (39) 

On the other hand, Eq. (32) is discretized along the finite characteristic curves as 

<IF -<IL = i-,L.{r\F - VL) (40) 

gp- 1R = i+,R(VF - VR) (41) 

Hence, VF and qp can be expressed in terms of rji, T)R, qz,, qn, (~,L and £+,# as: 

$-,LVL - Z+.RVR - (?£ - qn) 
VF 

qp 

(42) 

(43) 

-,L - Z+,R 

j-MR ~ Z+.RQR + J-LJ+fiiVL - VR) 

When the computational point is located at the matching boundaries, the disconti- 

nuity of q should be considered. The jump of the value of q is determined through the 

matching boundary condition (27) as well as the algorithmic form of Eq. (21), that is 

tan 0 
?n+i =qn _ r?«+i?n 

(h - dd)(h - du) 

pn   _ pn 
dd du ] A f 

IcosS   ' 
(44) 
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The offshore and onshore boundary conditions are discretized as: 

C*' = i.",-c»|?rai (16) 
OX 'on 

m in 
in which drjldx]     and drjldx\     are calculated through the numerical differentiation 

loff Ion 

method based on Lagrangian interpolation formula (Hildebrand, 1987). 

Lin's method was initially developed for the computation of continuous flow, but 

its further application have shown that it can also simulate discontinuities (Lin et al., 

1982). 

As long as the water surface elevation near the lateral boundaries is obtained, the 

reflection coefficient KR, and the transmission coefficient Kq; can easily be calculated. 

5    SOME COMPUTATIONAL RESULTS 

Wave reflection and transmission coefficients are dependent on the incident wave con- 

ditions as well as the placement of the plate. The incident wave steepness HI/LQ, 

the relative water depth h/Lo, the relative submerged depth d/h, the slope of the 

plate tan 8 and the relative length of the plate I/LQ can be chosen as independent 

dimensionless parameters. To investigate the relationships, the variation of A'R and 

A'T against 1/LQ is computed for various values of the other parameters. The results 

are shown in Figs. 3 to 6 along with the experimental data. Table 1 summarizes the 

conditions. 

Figure 3 shows the comparison of reflection and transmission coefficients among 

linear waves and waves with different incident steepness. It can be found that the in- 

fluence of the incident wave steepness becomes remarkable when the wave nonlinearity 

is considered; the transmission coefficient decreases with the increase of the incident 

wave steepness. 

Figure 4 shows the change in the wave reflection and transmission coefficients against 

the submerged depth of the plate. Since wave motion decays downwards from the free 

surface, too large a submerged depth of the plate makes little contribution to the wave 

deformation. 

Figure 5 shows the variation of the reflection and transmission coefficients of waves 

with different relative water depth. It is found that for a given relative length of the 

plate, the reflection and transmission coefficients does not show very large difference 

for the wide change of the relative water depth. This indicates, as naturally expected, 
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Table 1: Conditions for computation and experiment 

CASE /i(cm) T(s) #i(cm) d/h tan# 

STP 

1 20.0 0.80 SMALL 0.2 0.0 

2 20.0 0.80 1.5 0.2 0.0 

3 20.0 0.80 3.6 0.2 0.0 

SMD 

1 20.0 0.80 2.0 0.2 0.0 

2 20.0 0.80 2.0 0.5 0.0 

RWD 

1 20.0 0.88 1.5 0.2 0.0 

2 20.0 0.62 2.0 0.2 0.0 

SLP 

1 20.0 0.80 1.8 0.3 0.2 

2 20.0 0.80 1.8 0.3 0.4 

that for a given absolute length of the plate, longer waves are easier to transmit over 

the plate. For very long waves, like tsunami, a plate can not function at all as a 

breakwater. 

Figures 6 indicates that there is no significant change in the reflection and trans- 

mission coefficients with the slope of the plate if the mean submerged depth is kept 

constant. The computation for the inclined plate is available only for 1/L0 less than 

a certain value, because a longer plate would emerge from the free surface, for which 

the present model is not valid. 

6    CONCLUDING REMARKS 

A mathematical model of nonlinear wave motion has been developed and applied to 

simulating the wave transformation over a submerged plate. Numerical computation 

based on the method of finite characteristics for general conditions have been proposed. 

The computed wave reflection and transmission coefficients have been compared with 

the experimental data under various conditions. The overall agreement is satisfactory. 
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