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A Fully-Dispersive Nonlinear Wave Model 

and its Numerical Solutions 

Kazuo Nadaoka1, SerdarBeji2 and Yasuyuki Nakagawa3 

Abstract 

A set of fully-dispersive nonlinear wave equations is derived by introducing a 
velocity expression with a few vertical-dependence functions and then applying the 
Galerkin method, which provides an optimum combination of the vertical- 
dependence functions to express an arbitrary velocity field under wave motion. 
The obtained equations can describe nonlinear non-breaking waves under general 
conditions, such as nonlinear random waves with a wide-banded spectrum at an 
arbitrary depth including very shallow and far deep water depths. The single 
component forms of the new wave equations, one of which is referred to here as 
"time-dependent nonlinear mild-slope equation", are shown to produce various 
existing wave equations such as Boussinesq and mild-slope equations as their 
degenerate forms. Numerical examples with comparison to experimental data are 
given to demonstrate the validity of the present wave equations and their high 
performance in expressing not only wave profiles but also velocity fields. 

INTRODUCTION 

Although evolution of non-breaking waves is principally governed by their 
nonlinearity and dispersivity, there exist no wave equations which can express 
these two effects under general conditions. For example, the Boussinesq-type 
equations are weakly nonlinear-dispersive equations and can describe only shallow 
water waves. Although several successful attempts for extending their applicable 
range in relative water depth have been reported (Madsen, et al., 1991; Nwogu, 
1993, etc.), even such an improved model cannot be relied on if the depth becomes 
comparable with the wave length or more. 
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The mild-slope equation of Berkhoff (1972) has no restriction on depth; but it 
can be used only for linear monochromatic (and hence non-dispersive) waves. The 
time-dependent forms of the mild-slope equation (e.g., Smith and Sprinks, 1975) 
can describe the dispersive evolution of linear random waves; but their band-width 
of spectrum is restricted to be narrow. (In this sense, they may be called "narrow- 
banded mild-slope equations".) 

To break through all these restrictions, in the present study, new fully-dispersive 
nonlinear wave equations have been developed. Unlike the Boussinesq equations, 
which are derived with an asymptotic expansion procedure, the new equations are 
obtained by introducing a velocity expression with a few vertical-dependence 
functions and then applying the Galerkin method, which provides an optimum 
combination of the vertical-dependence functions to express an arbitrary velocity 
field of waves. The derived equations can express nonlinear non-breaking waves 
under general conditions, such as nonlinear random waves with a wide-banded 
spectrum at an arbitrary depth including very shallow and far deep water depths. 

In the following sections, the principal idea and derivation procedure of the new 
wave equations* as well as their simplified forms are presented with some 
numerical examples and their comparison to experimental data to demonstrate the 
validity of the equations and the performance especially in expressing velocity 
fields. Besides theoretical relationships of the present theory to various existing 
wave equations such as Boussinesq and mild-slope equations are also shown. 

THEORY 

Principal Idea : 

Generally speaking, any mathematical procedure to obtain a water-wave 
equation is a conversion process from original basic equations defined in a 3-D 
(x,y,z) space to wave equations to be defined in a horizontal 2-D (x,y) space. For 
this conversion, we must introduce an assumption on the vertical dependence of the 
velocity field. 

For example, the Boussinesq equations are obtained by introducing the following 
expression with polynomials of z on the velocity potential <1> (e.g., Mei, 1983): 

CO 

0{x,y,z3t)=
y£<Pm{x,y,t){z + hT, (D 
m=0 

where h is the water depth and the vertical coordinate z is taken upward from the 
still water level. With the Laplace equation of <!> and the boundary condition at 
the horizontal bottom, the above equation may be expressed as 

<P(^,Z,O=^-^^V^O+^1^V2V20O-..., (2) 

where V = (d/dx, d/dy).   Usually only the first two terms in the above equation are 
retained to derive the Boussinesq equations. 

This procedure is a kind of asymptotic expansion of 0 around the long wave limit, 

The fundamental idea of the present theory and numerical examples only for linear 
random waves with wide-band spectrum have been given in Nadaoka and Nakagawa (1991, 
1993a,b). The extension to nonlinear waves but in more complicated form of equations has 
been reported in Nadaoka and Nakagawa (1993c). 
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and hence the Boussinesq equations can be applied only to shallow water waves. 
This restriction is related to the fact that the asymptotic approximate form of eq.(2) 
is not enough to express a velocity field under deeper waves. This in turn suggests 
that derivation of new wave equations with much wider applicability may be 
achieved by providing a more reasonable way to express the vertical dependence of 
a velocity field for more general cases including random waves in deep water. 

In the present study, the following assumption is introduced to express the 
horizontal velocity vector, q = (u,v): 

q(x,y,z,t)= lUm(x,y,t)Fm(z), (3) 
m~\ 

where 

cosh kmh 

The choice of cosh functions in the above as the vertical-dependence functions is 
based on the general 2-D solution of Laplace equation of <£ on the horizontal 
bottom (e.g., Nadaoka and Hino, 1983), 

0(X,z,t) = r A(kj)C-^^±eW(ikx)dk, (5) 
J-°° coshkh 

where k is the wavenumber and A(k, t) is a time-varying wavenumber spectrum.    It 
should be noted that eq.(5) is valid also for nonlinear waves and hence the use of 
eq.(4) as the vertical-dependence function Fm(z) is not restricted to linear waves. 

In the discrete form of eq.(5), 

o(x,z,t) = ]T A(kt ,t)exp{iktx)Ak C°Shki (* +A (6) 
._, cosn KiH 

we need a large number of the spectral component A(kj,t) in case of broad-banded 
random waves. However this fact does not necessarily mean that TV in eq.(3) should 
be a large number, in spite of the resemblance between eqs.(3) and (6). This is 
true if each function, coshkj(h+z)/coshkjh, in eq.(6) can be expressed by eq.(3) with 
a few prescribed Fm(z). 

Galerkin Expression of a Velocity Field : 

To examine this, the following approximation has been attempted: 

coshk(h + z) _ y^, c ( \ ,„ 

where k is an arbitrary wavenumber and Fm(z) is as defined in (4). For this 
approximation we need a mathematical procedure to determine the unknown 
coefficients Qm (m = l,---,N). For this purpose, in the present study, the Galerkin 
method has been employed. 

Figure 1 shows the results of the approximation for five values of kh, covering 
very shallow to deep water depths. The number of components in eq.(7), TV, is only 
4 in this case and the prescribed values of kmh for Fm(z) are 1.6, 3.5, 6.0, 10.5, 
respectively. The fact that the remarkably good agreements between the exact 
and approximated values are obtained for any arbitrary kh means that the 
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Fig. 1 Comparisons of the exact and approximated vertical distribution functions. 

velocity expression by eqs.(3) and (4) with a small N may be applied to wave field 
under general conditions, such as random waves at an arbitrary depth including 
very shallow and far deep water depths. This is the most important finding to 
provide a basis of the new formulation of wave equations described in what follows. 

Derivation of Fully-Dispersive Nonlinear Wave Equations : 
With this basis of formulation, we are now ready to proceed to the derivation 

of new wave equations (for details, see Nadaoka et al, 1994). 
The basic equations defined in 3-D (x,y,z) space are the continuity equation, 

dz 
(8) 

and an alternative exact form of the Euler equation for irrotational flow (Beji,1994), 

dq 
dt 

+ V gr?+ 
fV0W 

df
1z + ~(<ls-(ls + ^) 0, (9) 

where qs and ws are the velocity components at the free surface z-r). 
The vertical velocity w is obtained from the continuity equation (8) by 

substituting eqs.(3) and (4) and integrating from the bottom to an arbitrary depth z: 

w(x,y,z,t) = ~2_^V 
m-\ 

s'mhkm{,h + z) 

km cosh kmh 
Um{x,y,t) (10) 

The vertical integration of the continuity equation (8) over the entire depth gives 

?-J>H (ii) 
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which then with the substitution of eqs.(3) and (4) yields 

dr\ N 

dt    ^ 

sinhkm(h+ rj) 

kmcoshkmh 
Vm (12) 

To obtain the evolution equations of Um (m = l,---,N), on the other hand, we 
may apply the Galerkin method to the momentum equation (9). Namely, after 
substituting eqs.(3)and (4) into eq.(9), the resulting equation is multiplied by the 
depth dependent function Fm{z) and vertically integrated from z=-h to rj. Since 
the depth-dependence function has N different modes, we obtain a total of N vector 
equations corresponding to each mode: 

N        dU 

m=\ at 
gv+^(qs-qs + ^l) 

N 

I 
m=\ 

where 

lkmV(V-£/J,+tf„m-(V-t/Jl,       {n = l,2,-,N)      (13) 

sinh(^m + k„)(h + TJ) ^ smh(km - kn){h + rj) 

2 cosh kmh cosh knh 

bn = S- 

km + kn 

s'mhkrl{h+ rj) 

k„ cosh k„h 

k„ cosh k„,h cosh k„h 

coshk„,(h+ r])smhkn(h+ TJ) 
(H) 

1 I sinh(km + k„)(h + rj)    sinh(km - kn)(h + rj) 

km + k„ k  - k nm     ^n 

The coefficients dnm in eq.(13) have rather complicated mathematical forms, but 
may be evaluated as being nearly equal to Dnm shown in eq.(19) later. In this 
evaluation the neglected terms are 0{e-Vh). 

Equations (12) and (13) constitute a solvable set of equations for 2N+1 
unknowns, rj, Um(m = \,---,N), and describe their evolution as wave equations. 
It should be noted that no approximation has been introduced on the nonlinearity 
and that the full-dispersivity can be attained by taking only a few components, as 
demonstrated later; hence eqs.(12) and (13) may be referred to as "fully-dispersive 
nonlinear wave equations". 

It should be further noted that km in eqs.(12) and (14) are not the wavenumbers 
in a usual sense like the spectral wavenumbers kj in eq.(6), but they are the 
parameters to prescribe Fm(z) so as to approximate a velocity field well enough. 
The wavenumber parameters km (m = l,---,N) are to be specified with the linear 
dispersion relation, com

2= gkmtanhk„,h, by prescribing the angular frequencies a>m 

(m = 1, • • • TV) as a set of input data for the computation to properly cover the wave 
spectrum concerned. Therefore km must be treated as spatially varying quantities, 
according to the variation in h(x,y). 
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Weakly Nonlinear Version of Fully-Dispersive Wave Equations : 

Although equations (12) and (13) may express both full nonlinearity and 
dispersivity, they have disadvantages in computational aspects; i.e., the coefficients 
(14) includes many hyperbolic functions, besides the arguments of them have the 
unknown variable rj. These points are undesirable in terms of computational time 
and robustness of the numerical algorithm. 

Therefore, in the present study, a simplified version of eqs.(12) and (13) has 
been also developed by introducing a weakly-nonlinear formulation. By invoking 
a Taylor series expansion of q around z=0, and keeping only the first-order 
nonlinear contributions both in eqs.(9) and (11), we obtain 

-2+v. U*fe+Wo =o 

dq 
+ V gJ?+ i Uz + n—- + — (<jr0 • q0 + Wo J 

dt dt     2V ' 

vo = 0, 

(15) 

(16) 

in which qo and wo are the velocities at the still water level z=0. 
With the corresponding change of the upper limit of the vertical integration 

from 77 to 0 in the Galerkin procedure, we get the following simultaneous equations 
as the weakly-nonlinear version of eqs. (12) and (13). 

~dt~ 
-5> c2 

'-+7J um = 0, (17) 

where, 

N        d\J 

m=\ Ot 

dwn      1 / 2) 

^l[c»v(v.g+DB(v.(/4 
at m=\ 

A    — 
6f„ • 03m 

k1 -kL 
Kn     Km 

B„ 
co„ 

gcol+h^kt-ml) 
A    - • 

r   = B"' 

2gkz„ 

(n = l,2,-,N)     (18) 

a>m = gkmtanhkmh, 

D  = vr (19) 

*^nm kl -kL 
Km     Kn 

2VL 
\A     -(k2-k2)r    )- 

gVh 

cosh k„h- cosh k„,h 

qo and wo in eq.(18) may be evaluated as 

N N 

m~\ m=\ g 
un (20) 

As shown in (19), the coefficients of the weakly nonlinear version of the equations 
are considerably simplified as compared with those defined in (14). 
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Linear Dispersion Characteristics of New Wave Equations : 
The linear dispersion characteristics of the present wave equations can be 

examined by solving the eigenvalue problem defined with the linearized equation 
of the fully-dispersive equations and with the prescribed values of kmh (m=l,...,N). 
An example of the computed dispersion curve is shown in Fig. 2, where N=4 and 
the same values as those for Fig. 1 are assigned to kmh (m=l,...,N). The computed 
values show perfect agreements with the theoretical linear dispersion curve over 
wide wavenumber domain extending from very shallow to far deep water. This 
remarkable feature of the present wave equations becomes more prominent by 
comparing with the dispersion curves of the classic Boussinesq equations and of 
the improved Boussinesq equations (Madsen et al. 1991), as shown in Fig.2. 

The reason why the present equations can possess fully dispersive characteristics 
may be found by examining the dispersive characteristics of the linearized single- 
component (JVM) equation.   In this case, the following analytical expression of the 

1.0 
gh 

— linear theory 

ooo present model 

xxx Boussinesq eq. 

DOD improved Bousinesq eq. 

DaaanaDaaoDDcjaoc 

5 10 15 ** 

Fig.2 Linear dispersion characteristics of the fully-dispersive equations. 

Fig.3 Dispersion curves of the single-component equation with each kth for Fig.2. 
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dispersion relation can be obtained by solving the corresponding eigenvalue 
problem: 

Cl 

c„ 

ci 

'-(c -c) 
(21) 

where Cp and CV are the theoretical linear phase and group velocities corresponding 
to the prescribed wavenumber kp, while k and C denote an arbitrary incident wave- 
number and the corresponding phase celerity dictated by the dispersion relation 
(21). Figure 3 depicts the dispersion curves described by eq.(21), in which one of 
the values of kmh (m=l,...,N) for Fig.2 is given respectively for each curve as kph. 
As it is seen, each selected component describes a dispersion curve which is 
tangent to the exact curve at the selected wavenumber kp. Hence combining all 
these contributions by the Galerkin procedure, we obtain the perfect agreement in 
the expression of the dispersive characteristics as shown in Fig.2. 

Single-Component (iV=l) Forms : 
"Narrow-banded nonlinear wave equations" 

The fact that as shown in Fig.3 each selected component describes a dispersion 
curve which is tangent to the exact curve at the selected wavenumber kp means that 
if the waves in concern have a narrow-band spectrum centered at k„, the single- 
component (N=\) versions of the wave equations (12) and (13) or (17) and (18) 
may be employed as "narrow-banded nonlinear wave equations". 

For example, the single-component forms of eqs.(17) and (18) may be written as: 

dr] 

~dt 
+ V 

Cz 

—L-+ T] (22) 

C C ^_ + C2V p g dt      p 
dWr,        1 / o 1 

^pv^v    ^g -v(v-«/0)+v *"P \t-p    ^g) 
(V-fo) (23) 

where Cp and Cg denote the phase and group velocities corresponding to kP as 
defined by the linear theory. 

By specifying Cp and Cg in these equations, we can show that various existing 
wave equations may be reproduced as the degenerate forms. For example, Airy's 
shallow water equations and Boussinesq equations can be obtained as follows. 

(1) Airy's shallow water equations: 

dr\ 
~dt 

C„ ••cs = p-^-g-ygh 

+ V-[(h+?1)q0] = 0, 

^+v(g17+iqo.qo\ = 0. 

(24) 

(25) 
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(2) Boussinesq equations: 

C
P = 

kih1 

1-^— Cg = Jgh 1 
k2

ph
2^ 

435 

^ + V-[(/?+^0] + yV2(V-?0) = 0, 

dt 
•V| gri+-q0-q0 | = 0, 

(26) 

(27) 

where all the higher-order terms have been neglected. 

Combined Form of the Single-Component Equations : 

"Time-dependent nonlinear mild-slope equation " 

The single-component equations (22) and (23) may be combined, with the 
introduction of the mild-slope assumption, to give the following equation of r/ (Beji 
andNadaoka, 1994): 

(c -C ) 
<V7«-ffiV   p,2 

g'v2riH-cpv{cpcg)-{yri) 

-SCr 3-2-^ 
r 

kzr4^ 
'(*•). 

By further manipulations, the linearized equation of (28), 

(c -C ) 
cgv„ -cp2

v-   p,2 
g'y2% -cpv{cpcg)ivn) = 0. 

(28) 

(29) 

can be found to lead to the time-dependent (or "narrow-banded") mild-slope 
equation proposed by Smith and Sprinks (1975), 

% + (op c„ n- •v{cpCgVri) = Q,       {cup = Cpkp) (30) 

and also to Berkhoffs (1972) elliptic equation as an original steady form of the 
mild-slope equation, 

^ccz+v-(c„qvz) = o, (31) 

in which Z denotes a spatially varying wave amplitude. Therefore, eq.(28) can be 
regarded as an extension of the mild-slope equations to nonlinear waves. In this 
sense, eq.(28) may be called "time-dependent nonlinear mild-slope equation". 
However its linear dispersion characteristics are not the same as those of the time- 
dependent mild-slope equation (30), since the latter equation approximates more 
limited region around mp in the dispersion curve (Beji and Nadaoka, 1994). This 
means that even in the linear version of eq.(28), eq.(29), the new mild-slope 
equation has an advantage as compared with the conventional one. 
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Unidirectional Simplified Form of Nonlinear Mild-Slope Equation : 
Equation (28) may be further elaborated for case of unidirectional propagation 

of waves in the positive x-direction only. The reason of taking up the analysis of 
such a simplified case lies in the attractive form of the KdV equation, which will be 
recovered as a special case. Skipping the derivation procedure (see Beji and 
Nadaoka, 1994) the equation we obtain is 

CgVt ^CJC   \C)n     (Cp~Cgh       CP(
C

P~
C

Z} 

cP{cg)xAcP-cg){cp)x\v+\g 
c„ 

3-2-8- 
C„ 

Iki 

k2r4 
n.p^p 

g M. : 0,     (32) 

which describes the weakly-nonlinear wave evolution of a narrow-banded uni- 
directional wave field centered at the primary wave frequency cop = kpCp 

The specification of C„ and Cg in eq.(32) yields again some degenerate forms. 
For weakly-dispersive shallow water waves, the specification, 

C„ 
r,27.2 \ 

C
g = 

k2
ph^ 

leads to the KdV equation for a gently varying depth 

ni+Q 
K       h2 _3_ 

4/T •-M. = 0, (33) 

in which C, o • 

For deep water, on the other hand, Cp = Jg/kp, Cg = Cp/2, then we have 

3 1 
11( + ^pHx      ,2 Vxxt 

c, 
2k2

p 
fr%=+|;fM  =0, 2C, 

(34) 

which can be shown to admit the second-order Stokes' waves in deep water as an 
analytical solution. 

NUMERICAL EXAMPLES 

The forms of the single-component equations are in perfect correspondence with 
those of the Boussinesq equations. This is an important advantage because it allows 
the adoption of an efficient implicit scheme which has been developed for solving 
the Boussinesq equations. The numerical schemes for the combined forms of the 
single-component equations, (28) and (32), are of course much simpler and need 
shorter computational time. 

The fully-dispersive equations, on the other hand, require a more complicated 
scheme to solve the N momentum equations. In the present study, a generalized 
Thomas algorithm, or the so-called block elimination method, is used for solving 
the linear algebraic equations resulting from an implicit three-time-level, centered 
discretization of the momentum equations (Nadaoka, et al., 1994).    The values of 
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Um(m = l,---,N) at the boundary may be prescribed by applying a Galerkin 
procedure similar to that for eq.(7). The angular frequencies <om to specify the 
corresponding km(m=\,---,N) are chosen so as to properly cover the frequency 
spectrum concerned. It has been found through various numerical computations, 
some of which will be shown later, that TV required is usually no more than 3 and 
the use of slightly different set of am (m = 1, • • •, TV) yields no appreciable difference 
in the computational results and hence the apparent ambiguity in selecting com 
(m = 1, • • •, TV) does not affect the validity of the present model. 

The following parts are devoted to show some typical numerical examples. 

(1) Linear random waves 
To examine the fundamental performance of the fully-dispersive equations, their 

linearized equations were applied to a case of linear random waves in deep water 
with a Bretschneider-type spectrum, which has a broad band-width in comparison 
with, e.g., JONSWAP. The relative water depth to the wave length corresponding 
to the mean period Tm is one (h/Lm=\). Figure 4 shows the comparisons with the 
predictions of linear theory for surface displacement and horizontal velocity at two 
different depths after 20 wave periods elapsed over a distance of five wavelengths. 
Good agreement with the theory is observed for both the surface displacement and 
velocity profiles. In the computation three components were used: k\h=2n, k2h=3n, 
k-ih=5-n with 4x=Zm/90 and At= Tm/90. The relatively fine resolutions were 
deemed necessary for the accurate representation of higher frequency components 
with shorter wavelengths and periods. No sponge layer was needed to improve the 
absorption at the outgoing boundary; the computational domain was not longer 
than shown. Good absorption of the radiating waves is attributable to the fact that 
the outgoing waves are radiated at three different wavenumbers instead of one. 
This is an important advantage especially in long time simulation of random waves. 

(2) Nonlinear regular and irregular waves propagating over a bar 
Further examinations on the fully-dispersive equations have been made through 

the comparisons with the laboratory data obtained by the experiment on the 
nonlinear wave deformation over a submerged trapezoidal bar as shown in Fig. 5, 
which is similar to that of Beji and Battjes (1994). The two-component form of eqs. 
(17) and (18) was used for the computation by selecting the corresponding angular 
frequencies as (o\=2%/Tmd a>2=47i/r. The experimental data compared is that for 
which the incident wave height H and period T are 2.0cm and 1.5s, respectively. 
Note that in this case the largest relative depth h/L observed was 0.35 at most. 
Figure 6(a) shows the comparisons for the water surface profiles at station 3, 5 and 
7, while Fig.6(b) represents the velocity comparison at three depths at station 7, 
where an appreciable wave-decomposition phenomenon was observed. On the other 
hand, Figs.7(a) and (b) show the comparisons in which the improved Boussinesq 
equations of Madsen et al. (1991) were used for the computation. From these 
results, it is found that in the water surface profiles the present wave equations 
show good but nearly the same degree of agreements as compared with the 
improved Boussinesq equations. In the velocity profiles, on the contrary, the 
agreements for the improved Boussinesq equations deteriorate, although for the 
present equations the agreements are comparable to those in the surface profiles. 

As a test for nonlinear random waves traveling over a submerged trapezoidal 
bar, the experimental data of Beji and Battjes (1994) was compared with the 
computational results by the two-component wave equations (17) and (18). The 
incident wave field has a JONSWAP type random wave spectrum with a peak 
period Tp=2s. The first four stations are in the upslope region where the nonlinear 
shoaling takes place.    The remaining three stations are in the downslope region, 
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where harmonic wave decomposition becomes appreciable. In the computations 
k\ and ki for each component are selected to be k„ and nkp, respectively, where kp 
denotes the wavenumber corresponding to the peak period Tp. Figure 8 shows the 
results of the comparison at six different stations, indicating good agreements at all 
the stations. (It has been also found that even in case of using the simplest single- 
component equation (32) for the computations the agreements are slightly worse 
but still comparable to those indicated in Fig.8.) 

(3) Stokes and cnoidal waves 
The comparisons with the theories of steady nonlinear wave train have been 

also conducted by using the various versions of the present wave equations. The 
wave theories compared are of Stokes, cnoidal and solitary waves. As an example, 
Fig.9 show the comparisons with the second-order Stokes and cnoidal wave 
theories. The computations were carried out with the unidirectional simplified form 
of the nonlinear mild-slope equation (32). It is found that even this simplest version 
of equations can describe steady nonlinear wave trains with remarkably good 
accuracy under wide conditions including very shallow and far deep water waves. 
Solitary waves are also found to be well predicted by the present models, although 
the results are not presented here (see Nadaoka, et al.,1994; Beji &Nadaoka, 1994). 

CONCLUSIONS 

The major conclusions of the present study are summarized as follows : 
1. Fully-dispersive nonlinear wave equations are presented which can express 
nonlinear non-breaking waves under general conditions, such as nonlinear random 
waves with wide-spectrum at an arbitrary depth including very shallow and far 
deep water depths. 
2. The single-component forms of the new wave equations, one of which is referred 
to as "time-dependent mild-slope equation", are shown to produce various existing 
wave equations like Boussinesq and mild-slope equations as their degenerate forms. 
3. Even under relatively shallow wave condition, present wave model can evaluate 
more precisely the velocity field than the improved Boussinesq equations. 
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Fig.4 Linear random wave simulation ; linear theory (—) vs. computational results (O). 
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Fig.6 Comparisons in rj, u and w for the present fully-dispersive equations. 
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Fig.7 Comparisons in rj, u and w for the improved Boussinesq equations. 
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Fig. 8 Comparison with laboratory data for nonlinear random waves propagating over a bar. 
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