
CHAPTER 44 

FORMULATION AND VALIDATION OF VERTICALLY 2-D 
SHALLOW-WATER WAVE MODEL 

Bradley D. Johnson1, Nobuhisa Kobayashi2, and Daniel T. Cox3 

Abstract 
A numerical model is developed to predict the time-dependent, two-dimensional ve- 

locity field under normally incident breaking waves on beaches and coastal structures. 
Use is made of the depth-integrated continuity and horizontal momentum equations, 
where the momentum equation includes the momentum flux correction due to the ver- 
tical variation of the horizontal velocity. The third equation for the momentum flux 
correction is derived from the depth-integrated wave energy equation together with a 
cubic horizontal velocity profile. The three equations are solved using the MacCor- 
mack finite difference method. The quasi two-dimensional model is compared with 
two laboratory data sets and is found to predict the vertical variation of the horizontal 
velocity measured below the trough reasonably well. However, the energy dissipation 
in the model is primarily numerical for breaking waves on gentle slopes despite the 
explicitly modeled energy dissipation due to wave breaking. 

Introduction 
The quantitative prediction of detailed sediment transport on beaches and armor 

stability on coastal structures requires a numerical model that can predict the time- 
dependent, vertically two-dimensional velocity field of breaking waves on slopes with 
sufficient accuracy and reasonable computation time. 

Available time-dependent, one-dimensional and other numerical models for break- 
ing and nonbreaking waves on inclined structures and beaches (e.g., Kobayashi and 
Wurjanto 1989) are relatively simple and robust. Generally, these models predict 
the free surface elevation fairly accurately, within about 20% errors. The compar- 
isons of a one-dimensional model with the experiment for regular waves spilling on 
a rough, impermeable 1:35 slope conducted by Cox et al. (1995) indicated that the 
horizontal velocity measured below the wave trough level was represented by the com- 
puted depth-averaged velocity reasonably well. The temporal variation of the bottom 
shear stress was predicted poorly because errors in the computed horizontal velocity 
were magnified in the computed bottom shear stress and because the bottom friction 
factor was not really constant.  These limited comparisons suggest that a vertically 
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two-dimensional model will be required to predict the detailed vertical variations of 
the fluid velocities and shear stress which are essential for predicting cross-shore sedi- 
ment transport on beaches and hydrodynamic forces acting on armor units on coastal 
structures. 

A simplified two-dimensional model called VBREAK has been developed assuming 
a cubic horizontal velocity profile outside of the wave boundary layer. The verti- 
cally two-dimensional problem is then reduced to a depth-integrated one-dimensional 
problem in which three time-dependent, one-dimensional differential equations can be 
solved numerically for the water depth h, depth-averaged horizontal velocity U, and 
near-bottom horizontal velocity ui,. The simplified two-dimensional model is compu- 
tationally as efficient as the previous one-dimensional models. As a result, the new 
model can be applied easily and routinely using workstations. This paper summarizes 
the numerical model VBREAK described in detail by Kobayashi and Johnson (1995) 
and the comparisons of the model to available data presented in Johnson et al. (1996). 

Mathematical Formulation 
The approximate governing equations adopted in the numerical model named 

VBREAK are derived from the two-dimensional continuity and Reynolds equations 

dx'3 
0 (1) 

8u>       , du\    _       1 dp' 1 dr'i3 

W + u'd7J   -  "pM^9      P dx> (2) 

in which the prime indicates the physical variables and the summation convention is 
used with respect to repeated indexes. The symbols used in (1) and (2) are depicted 
in Fig. 1 where t' = time; x[ = horizontal coordinate taken to be positive landward; 
x'2 = vertical coordinate taken to be positive upward with x'2 — 0 at the still water 
level (SWL); u[ = horizontal velocity; u'2 = vertical velocity; p = fluid density which 
is assumed constant; p' = pressure; g = gravitational acceleration; ^2 = Kronecker 
delta; and r/.- = sum cf turbulent and viscous stresses. Assuming that the viscous 
stresses are negligible, r\: may be expressed as (e.g., Rodi 1980) 

(3) 

in which v't = turbulent eddy viscosity; and k' = turbulent kinetic energy per unit 
mass. 

To simplify (1) and (2) with (3) in shallow water, the dimensional variables may 
be normalized as 

ux = 
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SWL 

h' = W-4) 

in which T' and H' are the reference wave 
period and height used for the normaliza- 
tion. The parameter a defined in (6) is 
the ratio between the horizontal and verti- 
cal length scales and is assumed to be much 
larger that unity. 

The normalized variables in (4) and (5) 
are assumed to be on the order of unity in 
shallow water. The normalization of v[ and 
k' in (5) is based on the turbulence measure- 
ments in a wave flume by Cox et al. (1994) 
which have indicated that ut and k are on the 
order of unity or less inside and immediately 

Figure 1: Definition sketch outside the surf zone, respectively. The 
terms of the order of a~2 are neglected in the normalized equations corresponding to 
(1) and (2). 

The conventional notations of x = xi, z = x2, u — U\ and w ~ u<i are used in 
the following. The simplified depth-integrated continuity and horizontal momentum 
equations under the assumption of a2 ^> 1 are expressed as 

dq 
dt 

dh 
In dx 

d 
dx (qu + m + 

= 0 

-eh- n 

with 

Ufdz 

(7) 

(8) 

(9) 

where h = water depth given by h = (ij — Zb)\ q — volume flux per unit width; U — 
depth-averaged horizontal velocity defined as U = q/h; 6 — normalized bottom slope 
defined as 9 = dzi/dx; TJ = bottom shear stress; and m = momentum flux correction 
due to the vertical variation of the horizontal velocity u. The vertical momentum 
equation yields essentially hydrostatic pressure for shallow water. 

To include energy dissipation due to wave breaking in Boussinesq equations, Zelt 
(1991) and Schaffer et al. (1992) added a term corresponding to the term for the 
momentum flux correction m in (8). Zelt (1991) expressed this additional term in 
the form of horizontal momentum diffusion with an artificial viscosity. The artificial 
viscosity was calibrated for breaking solitary waves where the diffusion term was acti- 
vated using a semi-empirical criterion for solitary wave breaking. On the other hand, 
Schaffer et al. (1992) expressed the additional momentum flux using a simple approach 
based on a surface roller that represented a passive bulk of water riding on the front 
of a breaking wave. An empirical geometric method was used to determine the shape 
and location of the surface rollers during the computation. Unlike the present model, 
these models do not predict the vertical variations of the fluid velocities. 

The equation for the momentum flux correction m is derived from the depth- 
integrated instantaneous wave energy equation (Kobayashi and Wurjanto 1992) 
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The specific energy E defined as the sum of kinetic and potential energy per unit 
horizontal area is given by 

E    =    ^(qU + m + i]2) for zb < 0 (11) 

E    =    -(qU + m + ri2- zfj for zb > 0 (12) 

in which the potential energy is taken to be relative to the potential energy in the 
absence of wave action with SWL at z — 0. The energy flux EF per unit width is 
expressed as 

EF = m+\ (qU2 + ZmU + m3) (13) 

with 

m3= [   (« - Uf dz (14) 
J*b 

in which m% — kinetic energy flux correction due to the third moment of the velocity 
deviation (u — U) over the depth. The energy dissipation rate D per unit horizontal 
area in (10) is given by 

*-£'£* <15> 
where use is made of the no slip condition u = 0 at z = zb. 

The energy dissipation rate D may be expressed as the sum of dissipation due 
to bottom friction, Df, and dissipation due to wave breaking outside of the wave 
boundary layer, DB- The wave boundary layer is not analyzed explicitly in this 
numerical model. The energy dissipation rate Dj inside the wave boundary layer may 
be estimated by (Jonsson and Carlsen 1976) 

Df = n at;   n = fw\ub\ub-   fw - -ofw (16) 

where uj, = near-bottom horizontal velocity immediately outside the wave boundary 
layer and fw = friction factor (Jonsson 1966). Assuming that the thickness of the 
wave boundary layer is much smaller than the water depth, DB may be estimated as 

DB —I   vt { — 1   dz   outside boundary layer (17) 

Rearranging the instantaneous wave energy equation (10), the equation for the 
momentum flux correction m is derived 

dm      d  .„   „ .     „TT dm     „.   _      _   . .„„. 
^ + ^{3mU + m3) = 2U~-2(rbub + DB) (18) 

in which ub — ub — U — near-bottom horizontal velocity correction due to the vertical 
variation of the horizontal velocity u outside the wave boundary layer. 

In order to express m, m3, and DB in terms of ub, the horizontal velocity u outside 
the wave boundary layer is assumed to be expressible in the form 

u(t,x,z) = U(t,x) + ub(t,x)F(Q (19) 
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with 
C = [z - zb(x)] /h(t, x)     for 0 < C < 1 (20) 

in which F = normalized function expressing the vertical variation of the velocity 
deviation (u — U) from ( = 0 immediately outside the wave boundary layer to £ = 
1 at the free surface. Substitution of (19) into the normalized continuity equation 
corresponding to (1) yields the vertical velocity w(t,x,z) where w = 0 at z = zb. The 
dimensional turbulent eddy viscosity v[ outside the wave boundary layer is assumed 
to be given by 

4=(CW2||£| (21) 

in which Ce = mixing length parameter. The turbulence measurements inside the surf 
zone by Cox et al. (1994) have indicated that (21) is a reasonable first approximation 
outside the wave boundary layer and that Ce is on the order of 0.1 (Ce — 0.1 is used 
herein). The corresponding normalized turbulent eddy viscosity vt defined in (5) is 
expressed as 

vt = ch 
du 

Tz 
Substitution of (19) with (22) into (9), (14), and (17) yields 

m   =   C2hul ;      C2= f1 F2d( 
Jo 

m3    =   C3hut ;      C3=  f1 F3d( 
Jo 

DB   =   CBCja |M(,|
3 ;   cB = r 

Jo 
dF 
d( 

(22) 

(23) 

(24) 

d( (25) 
3 

Madsen and Svendsen (1983) and Svendsen and Madsen (1984) assumed a cubic ve- 
locity profile for their analyses of a hydraulic jump and a turbulent bore on a beach. 
Accordingly, the function F in (23) - (25) outside the wave boundary layer is assumed 
to be cubic and expressed as 

F = 1 - (3 + 0.75a)C2 + a(3     for 0 < ( < 1 (26) 

in which a = cubic velocity profile parameter. The shear stress r should drop to 
zero at the free surface. To satisfy |j = 0 at the free surface, a = 4. The assumed 
form (26) results in r = 0 at £ = 0 immediately outside the wave boundary layer in 
contradiction with the turbulence measurements inside the surf zone by Cox et al. 
(1994). The cubic profile assumed by Svendsen and Madsen (1984) suggests that the 
parameter a is approximately 3 and the range of a — 3-4 is considered in the following. 
Substitution of (26) into (23) - (25) yields C2, C3, and CB as a function of a. 

Fig. 2 shows the cubic velocity profile function F given by (26) as a function of 
C for a = 3.0, 3.5, and 4.0. The abscissa in Pig. 2 is the value of — F because uj is 
expected to be negative under the wave crest. Fig. 2 hence depicts the normalized 
vertical variation of the horizontal velocity deviation (u — U) under the wave crest. 
The assumed cubic profile is not sensitive to the parameter a in the range of a = 3-4 
except in the vicinity of the free surface where no velocity data is available inside the 
surf zone.   Fig. 3 shows the parameters C2,  C3 and CB as a function of the cubic 
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0.486 < C2 < 0.548 

15 

cqi4 

13 

*-^^                12.34 < CB < 15.16   • 

ub    = for  U < 0 (28) 

Figure 2:   Cubic velocity profile Figure 3:   Ci, C3, and CB VS.   a 
function — F as a function of £ 

profile parameter a. These parameters vary little for a = 3-4. Fig. 3 indicates that 
C2 ^ 0.5, Cz a —0.03 and CB — 13.   The computed results are also found to be 
insensitive to a and in this paper a = 3 for most comparisons with data. 

To obtain u\, for the computed h and m, it is assumed that 

ub   =    - (^J for (7 > 0 (27) 

,C2h) 

which ensures that |ttj| < |J7| with u\, — (U + M&). 

To examine the degree of numerical dissipation hidden in the computed results, the 
instantaneous energy equation (10) is averaged over time. The time averaged energy 
balance is 

^(E^)=-D]-DB
:
-D^ (29) 

Where the overbar denotes time averaging and Ep, Df, and DB are given by (13), 
(16), and (25) respectively. The time-averaged numerical dissipation rate D.n is added 
in (29) so that Dn can be estimated for the computed Ep, Df, and DB- 

Numerical Method 
To solve (7), (8) and (18) for h, q, and m, these equations are combined in the 

following vector form: 

with 

U = 

<9U     dF 
dt      dx 

" h ' (i 0 
<7 ;   F = F2 ;   G = G2 
m .  F3. G3 

(30) 

(31) 
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and 

F2   =   qU + m+^h2        ;    G2 = 0h + n (32) 

F3    =    3mU + m3 ;     G3 = 2 frbub + DB - U-^\ (33) 

Eq. (30) is solved numerically using the MacCormack method (MacCormack 1969) 
which is a simplified variation of the two-step Lax-Wendroff method (e.g., Anderson et 
al. 1984) and has been applied successfully for the computation of unsteady open chan- 
nel flows with hydraulic jumps (e.g., Chaudhry 1993). The use of the Lax-Wendroff 
method for (30) would be very difficult because this method requires the Jacobian of 
F with respect to U. 

The values of Uj at the node j with j = 1,2, ..., s and at the present time t are 
known in the following, where s = the most landward node. Computation is initiated 
at time t = 0 with no wave action in the computational domain, thus h = q = m =0. 
The unknown values of UJ at the node j and at the next time level f = (t + At) are 
denoted by the superscript asterisk. The predictor, corrector and final steps of the 
MacCormack method are expressed as 

U;    =    U,- - ^ (Fi+i- F,) - AtG,      for j = 1, 2, ..., s - 1 (34) 

Uj    =    tlj- -^ ($j - Fj_i) - AtGj    for j = 2, 3, ..., s - 1 (35) 

U]    =    ^(Vj + lJj) for j = 2, 3, ...,8-1 (36) 

The variable time step At is calculated by the following approximate expression 

C  A-r 
At= nrnl   /7T>       for, = 1,2,..., a (37) max (\Uj\ + \Jhj) 

in which C'n is the Courant number and the denominator in (37) is the maximum 
value of (\Uj\ + y/hj) at all the wet nodes. 

Use of the MacCormack method results in numerical high-frequency oscillations 
which tend to appear at the rear of a breaking wave, especially on a gentle slope. For 
open-channel flows, Chaudhry (1993) summarized a procedure to smooth these high- 
frequency oscillations. To apply this procedure for breaking waves on slopes excluding 
the boundary points, the computed water depth h*: at the node j and at the next time 
level t* is used to calculate the parameter Vj at the node j defined as 

\h*,, -2h*:+h* , I 

The parameter ej+0.5 at the midpoint of the nodes j and (j + 1) is given by 

/fi* + h*    \ °'5 

ei+0.5 = K        
J       J+1 max(i/j, uj+l)       for j = 2, 3, ..., {a* - 2)      (39) 
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in which « = numerical damping coefficient for regulating the amount of damping of 
the high-frequency oscillations. The computed water depth h* is modified as 

h) = h) + €i+0.5 (h*j+1 - hf) - €,-0.5 (h* - h*_x)     for j = 3, 4, ..., (a* - 2) (40) 

Likewise, U* and m* are smoothed using (40) with h* being replaced by U* and m"-, 
respectively, where «j+o.5 is the same. The smoothed h*j and UJ are used to calculate 
q*j = h*jUj. Chaudhry (1993) suggested expressions of VJ at the boundary points for 
open-channel flows. However, the addition of these expressions in (39) and (40) is 
found to produce spurious fluid motions even in the absence of waves on slopes. As 
a result, the smoothing at the end points is not recommended for breaking waves on 
slopes. For breaking waves on gentle beach slopes, K = 1 has been used to damp the 
high-frequency oscillations. For waves surging on steep slopes of coastal structures, K 

— 0.1 appears to be sufficient. However, the smoothing procedure based on (38) tends 
to cause more damping near the shoreline where the water depth h is very small. To 
remedy this uneven damping, the factor [(h* + h*+1)/2]°-5 is included in (39) to reduce 
the damping near the shoreline. 

The landward boundary is located at the moving shoreline on the slope where the 
water depth is essentially zero and the landward boundary algorithm is a minor exten- 
sion of the previous one-dimensional algorithm. The seaward boundary conditions on 
h and q utilizes the method of characteristics in basically the same way as the previous 
models(e.g., Kobayashi and Wurjanto 1989) with the inclusion of the momentum flux 
correction, m. However, the value of m at the seaward boundary needs to be found 
using (18). The value of m at x = 0 might be taken as m = 0 at x = 0 if the seaward 
boundary is located outside the surf zone. This is because the vertical variation of 
the horizontal velocity assumed in (18) is caused by wave breaking in this numerical 
model for shallow water waves. However, the boundary condition of m = 0 at x = 0 
will yield m = 0 for t > 0 and x > 0 because m — 0 is a trivial solution of (18). It is 
hence required to introduce m > 0 at x •= 0 so that m > 0 for t > 0 and x > 0. One 
option is to rewrite (18) in terms of uj, as 

ot      ox 2C2   \h  ox        dx J C?.h. 

where CBI — CBC}CT. Note that ub = 0 is not a trivial solution of (41). The value of 
m — C2hul at x = 0 may then be obtained using the value of ub at x = 0 computed 
using (41) which is approximated by an explicit first-order finite difference. 

Comparison of Previous 1-D and Present Models 
To demonstrate the effectiveness of the MacCormack method, the present model 

VBREAK is reduced to a one-dimensional model and compared with the previous 
one-dimensional model IBREAK of Kobayashi and Wurjanto (1989). The quasi one- 
dimensional model uses an explicit first order finite difference of (41) to obtain the 
value of (ub)\ and thus m\, the momentum correction factor at the next time level 
at the seaward boundary. However, when the value of ml is set to zero at all times, 
the computed values of m*: at any node are zero for all times everywhere inside the 
computational domain. Thus the computed horizontal velocity has no vertical vari- 
ation through the specification of zero vertical variation at the seaward boundary. 
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Figure 4: Cross-shore variations of computed depth-averaged velocity U 

The only difference, then, between VBREAK and IBREAK is the different numerical 
methods employed to solve the same governing equations where IBREAK is based on 
the dissipative Lax-Wendroff method. Use is made of the 1:2.5 riprap revetment test 
conducted by Ahrens (1975) for the comparison. The computed free surface elevations 
turn out to be essentially identical while the computed depth-averaged velocities U 
display minor differences near the shoreline as shown in Fig. 4. The cross-shore vari- 
ation of the depth-averaged velocity is depicted at 5 times throughout the final wave 
period. The computed velocities for each model are identical at t = 5 and 6 due to 
wave periodicity in Fig. 4. 

Comparison with Data of Stive (1980) 
The model is compared with the comprehensive measurements of test 1 presented 

by Stive (1980) and Stive and Wind (1982). Because the numerical model predicts 
the vertical variations of the horizontal velocity, the comparison of the measured and 
computed velocities can be made without any ambiguity. In Stive's test 1, the incident 
regular waves with period T' = 1.79 s broke as spilling breakers on the 1:40 concrete 
beach. The seaward boundary for the computation is taken to be at the location of 
still water depth d't = 0.2375 m, where the near-breaking wave profile was shown to 
be similar to the cnoidal wave profile as explained by Kobayashi et al. (1989). The 
measured wave height at the seaward boundary was H' = 0.172 m. The friction factor 
of 0.05 is used as in the previous computation by Kobayashi et al. (1989). A Courant 
number of 0.3 is adopted for the stable computation. 

The measured and computed temporal variations of the free surface are compared 
at x = 0, 1.29, 2.15, and 3.01 in Fig. 5. The variation of the free surface from the mean 
water level f\ for the last wave from t — 29.0 to t = 30.0 is shown in each panel. The 
crest of the computed wave form has been matched by hand with the measured crest; 
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therefore, Fig. 5 should indicate only the comparison of the predicted and measured 
wave shapes. The first panel shows that the specified incident cnoidal wave at x — 0 
agrees well with the measured profile. The high frequency oscillations following the 
wave crest are apparent in Fig. 5. 

The maximum and minimum horizontal velocities at x — 0,1.29, 2.15, and 3.01 are 
depicted in Fig. 6. In each panel the dashed line represents the computed horizontal 
velocity u and the solid line is the computed depth averaged velocity U. The vertical 
axis is the ratio of z/d where z is the vertical coordinate and d is the water depth below 
SWL. The maximum and minimum values in Fig. 6 are obtained at each elevation z 
without regard to the vertical phase differences. Panel one indicates that although the 
specified and measured free surface elevations match at the seaward boundary well, the 
maximum horizontal velocity is considerably overpredicted. Likewise, at locations x = 
1.29, 2.15, and 3.01 the maximum velocity is overpredicted. The greatest computed 
variation of the velocity over the depth occurs after breaking, at x = 1.29. This, 
however, does not correspond well to the velocity measured below the trough level 
that displays virtually no variation with depth at x — 1.29. 

Comparison with Data of Cox et al. (1995) 
Comparison is also made with the data collected by Cox et al. (1995) that included 

detailed velocity profiles inside the surf zone. The experiment was performed in a 
wave flume with a 1:35 beach constructed of Plexiglas with a layer of sand glued to 
the surface to increase the bottom roughness. At each measuring line, water velocity 
measurements were taken at approximately twenty elevations.  The free surface and 
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Figure 8: Normalized phase- 
averaged horizontal velocity u at 
three elevations at L4 

velocities were measured for the duration of the last 50 waves out of 300 at each line. 
The numerical model is run with 300 waves of 2.2 s period in order to be consistent 
with the experimental procedure. The phase averaging is based on the last 50 waves 
in the same way as the measured data. 

The friction factor f'w — 0.05 is used. A Courant number of 0.4 maintained numer- 
ical stability in the following comparison. The seaward boundary is located landward 
of the break point, at measuring line L3 as defined by Cox et al. (1995). The height 
of the incident regular waves at L3 was H' = 12.71 cm and the corresponding still 
water depth was 17.71 cm. 

Fig. 7 depicts the free surface at x = 0.0, 0.49, 0.98, and 1.47 in the surf zone at 
L3, L4, L5, and L6 where L denotes the measuring line. The free surface prediction 
is quite good despite a lagging phase error seen most prominently at x = 1.47. 

Fig. 8 shows the predicted and measured phase-averaged horizontal velocities at 
three elevations at L4 as a typical example. The first panel shows the velocities 
near the wave trough level. The solid line represents the measured values excluding 
dropouts in the data near the free surface. The second panel is a comparison at 
approximately mid-depth. The near bottom (1.1 cm above the bottom) velocities are 
plotted in the last panel. The unrealistic kink seen in panels one and three are due to 
the adopted relations (27) and (28) where the abrupt change in the velocity correction 
Ub is assumed to occur with the sign change in the depth averaged velocity, U. 

The measured and computed horizontal and vertical velocity profiles are compared 
at six equally-spaced phases over one wave period for L5 in Fig. 9. The first panel 
depicts the computed and measured horizontal velocity as a function of the normalized 
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- - Computed     — Measured 

Figure 9: Vertical variations of horizontal and vertical velocities at six phases at L5 

vertical distance (z — Zb) above the bottom. The computed and measured free surfaces 
are shown as an black dot and as a horizontal line, respectively. The second panel 
depicts the comparison of the measured and computed vertical velocities at the same 
six phases. The discrepancy between the measured and computed vertical variations 
are caused, in part, by the aforementioned phase mismatch. As a whole, the agreement 
is reasonable in spite of the assumed simple vertical velocity profile (26). This is 
probably because the comparison is limited to below the wave trough level. 

The normalized energy quantities involved in (29) are shown in Fig. 10. The 
numerical dissipation rate Dn dominates over the dissipation rate due to bottom 
friction, Df, and the dissipation rate due to wave breaking, Dg. This clearly indicates 
the shortcoming of the assumed velocity profile (26) which may be reasonable below 
the trough level but can not account for the much larger dissipation occurring above 
the trough level. Velocity data above the trough would be required to improve (26). 

Conclusions 
A numerical model is developed to predict the cross-shore and temporal varia- 

tions of the free surface elevation rj, the depth-averaged horizontal velocity U, and 
the near-bottom horizontal velocity correction «;, associated with the momentum flux 
correction m due to the vertical variation of the horizontal velocity u under the action 
of normally incident breaking waves. The three governing equations required for the 
three unknown variables are the depth-integrated continuity and horizontal momen- 
tum equations together with the new equation for the momentum flux correction m 
derived from the depth-integrated wave energy equation. 

The normalized vertical profile of the horizontal velocity u outside the thin wave 
boundary layer is assumed to be cubic on the basis of limited available data. The tur- 
bulent shear stress outside the wave boundary layer is assumed to be expressed using 
the turbulent eddy viscosity whose mixing length is proportional to the instantaneous 
water depth.  Although two additional empirical parameters are introduced in rela- 
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x ~ x 
Figure 10: Computed cross-shore variation of normalized energy flux, bottom dissi- 
pation, breaking dissipation, and numerical dissipation. 

tion to these assumptions, the computed vertical profiles of the horizontal velocity are 
found to be fairly insensitive to these empirical parameters in their ranges expected 
from limited available data. 

The numerical model is reduced to a one-dimensional model and compared to 
the previous one-dimensional model. With appropriate simplification of the seaward 
boundary condition, the momentum flux correction equals zero identically through- 
out the computation domain for all times. The results are essentially the same for 
both models. This comparison demonstrates the efficiency and accuracy of the Mac- 
Cormack method in the solution of the finite-amplitude shallow-water equations.The 
model is compared with the laboratory data presented by Stive (1980) and Stive and 
Wind (1982). The free surface elevations are predicted fairly accurately, while the 
maximum horizontal velocities are consistently overpredicted. The model is com- 
pared with the detailed fluid velocity measurements of Cox et al. (1995). Again, the 
free surface elevations are predicted fairly well. The horizontal velocity prediction is 
satisfactory apart from some phase mismatch and the unrealistic discontinuity in the 
velocity accompanying the sign change in U. As a whole, the agreement is reasonable 
considering the assumed simple vertical velocity profile. However, the model does not 
offer significant advantages over the previous one-dimensional models. 

Acknowledgments 
This work was sponsored by the US Army Research Office, University Research 

Initiative under contract No. DAAL03-92-G-0116 and by the National Science Foun- 
dation under grant No. CTS-9407827. 

References 

Ahrens, J.P., 1975. "Large wave tank tests of riprap stability."  Technical Memo No. 
51, U.S. Army Coastal Engineering Research Center, Ft. Belvoir, VA 



564 COASTAL ENGINEERING 1996 

Anderson, D.A., Tannehill, J.C., and Pletcher, R.H., 1984.    Computational fluid 
mechanics and heat transfer. Hemisphere, New York, NY. 

Chaudhry, M.H., 1993. Open-channel flow. Prentice Hall, Englewood Cliffs, NJ. 

Cox, D.T., Kobayashi, N., and Okayasu, A., 1994.    "Vertical variations of fluid 
velocities and shear stress in surf zones."    Proc.    23rd Coast. Engrg. Conf., 
ASCE, 98-112. 

Cox, D.T., Kobayashi, N., and Okayasu, A., 1995.   "Experimental and numerical 
modeling of surf zone hydrodynamics."   Res. Rept. No. CACR-95-07, Ctr. for 
Applied Coast. Res., Univ. of Delaware, Newark, DE. 

Johnson, B.D., Kobayashi, N., and Cox, D.T., 1996.   "Formulation and validation 
of vertically two-dimensional shallow-water wave model."-Res. Rept. No. CACR- 
96-05, Ctr. for Applied Coast. Res., Univ. of Delaware, Newark, DE. 

Jonsson, I.G., 1966. "Wave boundary layers and friction factors." Proc. 10th Coast. 
Engrg. Conf., ASCE, 1, 127-148. 

Jonsson, I.G., and Carlsen, N.A., 1976. "Experimental and theoretical investigations 
in an oscillatory turbulent boundary layer." J. Hydraul. Res., 14, 45-60. 

Kobayashi, N., DeSilva, G.S., and Watson, K.D., 1989.  "Wave transformation and 
swash oscillation on gentle and steep slopes."   J. Geophys. Res., 94(C1), 951- 
966. 

Kobayashi, N., and Johnson, B.D., 1995. "Numerical model VBREAK for vertically 
two-dimensional breaking waves on impermeable slopes"Res. Rept. No. CACR- 
95-06, Ctr. for Applied Coast. Res., Univ. of Delaware, Newark, DE. 

Kobayashi, N., and Wurjanto, A., 1989. "Numerical model for design of impermeable 
coastal structures."   Res. Rept. No. CE-89-75, Ctr.   for Applied Coast. Res., 
Univ. of Delaware, Newark, DE. 

Kobayashi, N., and Wurjanto, A.,  1992.    "Irregular wave setup and run-up on 
beaches." J. Wtrwy. Port, Coast, and Oc. Engrg., ASCE, 118(4), 368-386. 

MacCormack, R.W., 1969.  "The effect of viscosity in hypervelocity impact crater- 
ing." Paper 69-354, Am. Inst. of Aeronaut, and Astronaut., New York. 

Madsen, P.A., and Svendsen, LA., 1983. "Turbulent bores and hydraulic jumps." J. 
Fluid Mech., 129, 1-25. 

Rodi, W., 1980.  Turbulence models and their application in hydraulics. Intl. Assoc. 
Hydraul. Res., Delft, the Netherlands. 

Schaffer, H.A., Deigaard, R., and Madsen, P., 1992.  "A two-dimensional surf zone 
model based on the Boussinesq equations."   Proc.   23rd Coast. Engrg. Conf., 
ASCE, 1, 576-589 

Stive, M.J.F., 1980.   "Velocity and pressure field of spilling breakers."   Proc.   17th 
Coast. Engrg. Conf., ASCE, 547-566. 

Stive, M.J.F., and Wind, H.G., 1982. "A study of radiation stress and set-up in the 
nearshore region." J. Coast. Engrg., 6, 1-25. 

Svendsen, LA., and Madsen, P.A., 1984.  "A turbulent bore on a beach."   J. Fluid 
Mech., 148, 73-96. 

Zelt, J.A., 1991. "The run-up of nonbreaking and breaking solitary waves." J. Coast. 
Engrg., 15, 205-246. 


