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ABSTRACT 

The method for determining coefficients in the rational approximation is im- 

proved and a numerical method is developed for application of time-dependent 

mild-slope equation for random waves to two-dimensional wave fields. The va- 

lidity of the method is verified through comparisons with analytical solutions in 

typical situations and an experimental result of wave transformation around a 

man-made island on a uniform slope. 

1. INTRODUCTION 

Time-dependent mild-slope equations for random waves were derived from Berk- 

hoff's mild-slope equation by approximating frequency-independent expressions 

to frequency-dependent coefficients (Kubo et al, 1992; Kotake et al, 1992; Isobe, 

1994). It can be used to simulate directly the time evolution of irregular waves. 

The approximation by a rational function (Pade approximation) has a high ac- 

curacy to the coefficient over a wide frequency range (Isobe, 1994). However, 

the method for determining the coefficients in the rational function and the nu- 

merical calculation method for applying to two-dimensional problems were not 

established. In this paper, a method was developed to apply the time-dependent 

mild-slope equation for random waves to practical problems. The results of cal- 

culations are compared with analytical solutions in typical situations and an ex- 

perimental result of wave transformation around a man-made island on a uniform 

slope. 
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2. A TIME-DEPENDENT MILD-SLOPE EQUATION 
FOR RANDOM WAVES BASED ON RATIONAL 
APPROXIMATION 

The governing equation is as follows: 

V24> - wiV2 (^\ + (b0 + ico)} + .(&! + id)^ - 62^| = 0 (1) 

where t is the time, V the differential operator in the horizontal two directions, 
i the imaginary unit and <f> the unknown variable which is related to complex 
amplitude <j> as follows. 

^=^e-
iw'\ LU'=U-L0 (2) 

where w is a representative angular frequency, to and ui' the angular frequency 
and its deviation from w, a\,b0,b\ and b2 the coeffcients in the rational function 
in (4) which is approximated to k2 (k: wave number) in a Helmholtz equation 
(3) (Radder, 1979), and c0 and cj the energy dissipation term to model the wave 
breaking. 

V2j>+k24> = 0 (3) 

,2 = 
bo + hu' + b2u'2 

1 - OiW' l   j 

3. IMPROVEMENT OF METHOD FOR DETERMI- 
NING COEFFICIENTS 

3. 1. Condition of numerical stability 

For monochromatic progressive waves, <j> is expressed as 

1 _ npi{kxcoaS+kyeiiiO-u't) (5) 

Then, equation(l) becomes 

- k2 + axk
2J + [b0 + ico) + {W + iCl)uj' + b2{u)'f = 0 (6) 

Equation(6) can be solved for w' as 

J = {-(fllA,-2 + lh + ict) ± ^(chk
2 + lh + icx)

2 - 4b2(-k
2 + bo + ;:c0)} /(2/;2) (7) 
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To avoid numerical divergence, 7ra{a/} < 0. This requires that the magnitude of 

the imaginary part for y/ should not exceed c\. Let the real and imaginary parts 

in the \J     be denoted by A" and Y, respectively, then the condition is written as 

X > 0    (cx = 0) (8) 

X > (Y/2Cl)
2 - c\    (Cl>0) (9) 

The above condition should be satisfied for an arbitrary k, which yields 

61-46o62<0,    c0 = 0     (ci=0) (10) 

;)'-(s)©+(S)S0 <->•) 
In a previous study (Isobe, 1994), equal signs were taken for the sake of conve- 

nience within the above restrictions. Then, 

b2 = bl^bo) (12) 

Cl = {2b2/b1)c0 (13) 

However, numerical divergence occurs due to round-off error if the coefficients are 

determined by the above equations. An example is in the calculation of wave 

propagation over a submerged circular shoal. In the present study, the conditions 

were modified to avoid the numerical instability as follows: 

b\ - 66062 < 0,     c0 = 0     (Cl = 0) (14) 

Within the above restrictions, we take equal signs. Then, 

62 = 6?/(66b) (16) 

ci = (262/61)c0 (17) 

By considering the above two equations, independent parameters are a\, bQ, b\ 

and Co- 

3.2. Determination of coefficients 

The coefficients ai,b0,bi and 62 can be determined from three sets of u>' and 

k which satisfy the dispersion relation exactly and equation(16) which is the 

condition to avoid numerical divergence.   In the previous method (Isobe, 1994), 
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equation(4) was applied piece by piece to three intervals of frequency range to ap- 

proximate dispersion relation accurately, but it required extensive computational 

time for calculation of two-dimensional wave transformation of random waves. In' 

the present study, equation(4) is applied for the whole range of frequency and 

the coefficients are determined by using three sets of UJ' and k which satisfy the 

dispersion relation exactly on f /fp =0.76, 1.22, 1.92, where / is frequency, fp the 

peak frequency. Figure 1 shows the dispersion relation which was obtained by 

applying equation (4). The relative error due to the method is at most 10 % in 

the range of f/fp = 0.68 ~ 2.07 which occupies the major portion of wave energy 
in frequency spectrum. 

When we determine the values of coefficients a^, b0, &i and b2, we compensate 

for the error included in the finite difference form of the equation in the ADI 

method of which the detail is given later. The finite difference expressions for 

each term in equation(l) are related with the corresponding derivatives as 

dx2 
F.D. 

sin(i&Aa;cos#) 

~kAx cos 6 
cos(-io'At) 

29>l 
dx2 J^ (18) 

8y2 

d3c 

dx2dt 

83d> 

F.D. 

dy2dt 

s'm(~kAy s'm8) 

^kAysinO 

sin(|A:Ax cos ( 

|fcAx cos# 

sin(|fcA)/sin6 

^kAysin0 

.1 
cos(-w'At) 

2(Pl 
dy2 

sin(l^'Af)   <93^ 

\ui'At    dx2dt 

sin(§u/At)   d34> 

1^1 (19) 

IF.D 

10 

kh 

o^ 
o 

iw'At dy2dt 

I.-, 
= (-cosu>'At + ^)cj> = M 

1 

Figure 1: Accuracy of Pade approximation to k 

(20) 

(21) 

(22) 
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d4> sin w' At d<j>      Q d<j> 
dt F D "    ui'At   dt      A dt 

d2j> 
dt2 

F.D. ~ \    \uj'At    j   dt2 ~ '2 dt2 

(23) 

(24) 

where |px>. denotes the finite difference expressions. The wave directions 6 at 

calculation grid points are assumed as 45°, which makes the values of correction 

factors the same for x- and y-directions and closer to unity. Under the condition 

that Ax = Ay = A/, the finite difference expressions and correction factors are 

as follows: 
92h _ d2i d24>\ _ d2} 
§pr|F.D. - aigp-,        §p-|F.D. - «i g^r 
93j> I       _      a3}      _dli_\      — n   a30 

3^29tlF.D. — «2 gx2dt,     S!/29t|F.D. — "29j/29t 

(25) 

{   ^AI   )   (cos(5u, At))   ,   a2 = (^kr-J   "4^ j        (26) 

Then, instead of equation (6), the finite difference equation for equation(l) implies 

- aik
2 + axa2k

2J + bopo + &i/W + 62/?2w'2 = 0 (27) 

for c0 = Ci = 0.   By rearranging the equation with b2 ~ bl/6b0, the equation is 

written 

- b'aik
2 + a*a2k

2J + j30 + £/W + -fofu/2 = 0 (28) 

where 

b* = l/bo,     C = bi/b0,     a* = ai/b0 (29) 

Three independent parameters can be determined from three set of exact values. 

Since equation (29) is linear in a* and b*, these parameters can be eliminated 

to yield a parabolic equation in terms of £. After solving for £, we can determine 

cti, b0, W and b2 by equations (16) and (29). 

4. METHOD OF NUMERICAL CALCULATION 

The ADI method is employed in the numerical calculation to achieve high accu- 

racy in a reasonable computational time. The calculation is carried out alternately 

in the x- and ^-direction. In the discretization by the ADI method, the term V2<f> 

cannot be ensured a second-order accuracy in time. In the present study, the term 

is averaged over time to ensure the accuracy. The finite difference equations of 

the equation (1) in the x- and y-directions are written 

(t+1 time step : x-direction) 
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2 ^ (Ax)2 + (Ax)2 

my (Ax)2A< 

A (hzizlAAAhL , fe-^y + fe+A 
2 ^ (Ay)2 + (Ay)2 j 

_.   (^lj-i - 2*1 + kni) - (fe -2fe' + fe+i) 
(Ay)2Ai 

3 v y      2Ai 

_&2 (A^ " ° 

(t+2 time step : y-direction) 

1 (^-h-^if + ^th , ^-ij - 2$,,- + ft+1J 

(30) 

2 I (As)2 + (Aa 

Wl (AxfAt 

1 /r#£1-2^ + #&      ^-2^ + ^ 
2 ^ (Ay)2 + (Ay)2 

(Ay)2Ai 

+ (6o + «c0) — ^  + i{h + icx)    'J d 

*ff - 2*ff + &„• 
~b2 {At)2 -0 (31) 

where (i, j) is the grid number in the (a;, y) coordinate system, t the time, Ai 
and Ay the grid size in x- and y-direction, respectively. 

5. NUMERICAL RESULTS 

As for the frequency spectrum and the directional spreading function, the 
Bretschneider-Mitsuyasu-type and the Mitsuyasu-type were employed. The inci- 
dent waves consisted of 1000 components and were given by the single summation 
method. 
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5. 1. Refraction 

The present method was applied to the calculation of refraction of multi-directi- 

onal irregular waves on 1/50 slopes. The significant deepwater wave height and 

period are 1.0m and 8.0s. The principal wave direction is normal to the shoreline 

(0°). The maximum directional concentration parameter, Smax, is 10 in deep- 

water. In this case, the analytical solution can be obtained by means of linear 

superposition of the spectral components by Snell's law. Figure 2 and 3 compare 

the two-dimensional and cross-shore distributions of the significant wave height, 

respectively. Dashed lines show analytical solution and solid lines represent the 

results of numerical calculation. Good agreement is observed. 

Incident waves fy Offshore 
Y(m)f 

200- 

100 

Analytical solution 

' Calculation result 

•100 0  Onshore100  x<m> 

Figure 2: Significant wave height distribution due to refraction 
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Figure 3: Significant wave height cross-shore distribution due to refraction 
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5. 2. Diffraction 

Diffraction coefficients of multi-directional irregular waves for a semi-infinite 

breakwaters and through a breakwater gap have been calculated by Goda et al. 

(1978) by superposing analytical solutions. In the calculation, Bretschneider- 

Mitsuyasu-type frequency spectrum and Mitsuyasu-type directional distribution 

function are used. Dashed lines in Figures 4 and 5 show the results with the 

maximum directional concentration parameter, Smax = 10. In Figure 4, L denotes 

the wavelength corresponding to the significant wave period. In Figure 5, B 

denotes the gap width and this figure shows the case of B/L=8. Solid lines 

represent the results of the present method. These lines agree well with the 
dashed lines. 

 Analytical solution 
(Goda et al., 1978) 

 Calculation result 

-5-4-3-2-10    1    2    3    4    5 
Incident waves )} X/L 

Figure 4:   Diffraction coefficient around a semi-infinite breakwater for irregular 
waves .     ,  ..   ,    , ,. -Analytical solution 

(Goda et al., 1978) 

Calculation result 

-3 -2 -1 0 
Incident waves u 

Figure 5: Diffraction coefficient around a breakwater gap for irregular waves (A 

gap width of 8 significant wavelength) 
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5. 3. Submerged circular shoal on a constant bottom 

When waves propagate over a submerged circular shoal, the phenomenon of 

combined refraction-diffraction of waves occurs. To illustrate the capability of the 

present numerical model for the phenomenon, we compared the present results 

with that obtained by using the parabolic equation for a submerged circular shoal 

(Serizawa et al, 1990). Figure 6 shows a submerged circular shoal on a constant 

depth. The constant water depth is 15m, the water depth at the peak of the 

circular shoal with radius 160m is 5m. Serizawa et al. (1990) calculated for this 

case. The significant wave height and period are 1.0m and 5.1s. The principal wave 

direction is in the positive y-axis (0°). The maximum value Smax of the parameter 

S in the Mitsuyasu-type directional spreading function was 10. Significant wave 

height distributions are presented in Figeres 7 and 8, to compare with the previous 
numerical result. Good agreement is observed. 

-3 

-2 

-1 
Incident waves 

—»-   0 
X/L 

"--. 
\ 

1 \ 

7      8 

Figure 6: Sketch of submerged circular shoal on a constant bottom 

5. 4. Wave breaking 

Breaking wave model used is the same as Isobe (1987). The calculation of 

wave breaking was carried out in the cross-shore wave transformation problem for 

uni-directional irregular waves. The slope is 1/50. The significant wave period 

is 8.0s. The significant deepwater wave heights are 2.0m and 4.0m. In Figure 9, 

dashed lines show the results of calculation and solid lines show the results by 

Goda (1975). In the figure,H0 is the significant wave height in deep water and h 

the water depth. The effect of wave nonlinearity and wave setup in shallow water 

is neglected in the present method. By considering this, the results seems to be 

in reasonable agreement with the results by Goda. 
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-3   -2 
Incident waves {} X/L 

Figure 7: Present result for a submerged circular shoal on a constant bottom (the 

ratio of significant wave height to incident wave height) 
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Figure 8:   Previous result for a submerged circular shoal on a constant bottom 

(The ratio of significant wave height to incident wave height) 
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Figure 9: Significant wave height change of uni-directional irregular waves clue to 

shoaling and breaking 
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6. WAVE HEIGHT DISTRIBUTION AROUND 
A MAN-MADE ISLAND 

Numerical calculation of wave transformation around a rectangular man-made 

island on 1:50 slope is performed. It is an island of 1km long in the alongshore 

direction and 0.5km wide, and located about 1km from the coastal line. Hydraulic 

model tests with a multi-directional wave maker were carried out by Central Re- 

search Institute of the Electric Power Industry, Japan (Ikeno et al, 1995) to 

investigate effects of the irregularity and directional spreading of waves behind 

the man-made island. The model is 1/150 in scale and the island is 6.6m long and 

3.3m wide. The water depth at the man-made island is 20m at prototype scale 

which corresponds to 15cm at model scale. Side walls in the laboratory basin are 

installed on the slope along both edges of the wave maker, preventing waves from 

being diffracted. 

Numerical calculation is performed under the same condition as that of the ex- 

periment. The offshore significant wave height and period are 9.2m and 14.3s. As 

for the frequency spectrum and the directional spreading function, the Bretschnei- 

der-Mitsuyasu-type and the Mitsuyasu-type were employed. The maximum values 

Smax of the parameter S in the Mitsuyasu-type directional spreading function were 

25. The incident waves consisted of 512 components and were given by the single 

summation method, whereas input signal to each segment of wave maker was com- 

puted by superposing component waves with 512 frequencies and 90 directions by 

the double summation method. 

Figure 10 and 11, respectively, depict the numerical result and the experimental 

result (Ikeno et al., 1995) for significant wave height distribution. Figure 12 com- 

pares the longshore distributions of the significant wave height. The validity of 

the numerical model is verified through comparison with the experimental result. 

7. CONCLUSION 

We have proposed a method for determining coefficients in the rational ap- 

proximation and an efficient numerical calculation method for applying the time- 

dependent mild-slope equation for random waves to two-dimensional problems. 

The results of numerical calculations were compared with analytical and experi- 

mental results, which confirmed the validity of the present method. 
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1500 
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1200 

2400 Y, ,3000 X(m) 

Figure 10:   Calculation result ( The ratio of significant wave height to incident 

wave height, (#1/3)0 = 9.2m, T1/3 = 14.3s, 5max =25, 0p = 0° ) 

16   X(m)20 

Figure 11:  Experimental result (The ratio of significant wave height to incident 
 Calculation result 

•     Experimental result 
wave height, 1/150 model) 
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Figure 12: Comparison of the calculated and measured alongshore distribution of 

the wave height 



766 COASTAL ENGINEERING 1996 

ACKNOWLEDGMENTS 

The experimental results were provided by Central Research Institute of Electric 

Power Industry. This experiment was carried out as part of "Studies on advanced 

siting civil engineering technology for nuclear power plants". It was supported by 

nine Japanese power companies and the Japan Atomic Power Company. 

REFERENCES 

Berkhoff, J. C. W. (1972): Computation of combined refraction-diffraction, 

Proc. 13th Int. Conf. on Coastal Eng., ASCE, pp. 471-490. 

Goda, Y. (1975): Irregular wave deformation in the surf zone, Coastal Eng. in 

Japan, Vol. 18, pp.13-26. 

Goda, Y., T. Takayama and Y. Suzuki (1978): Diffraction diagrams for direc- 

tional random waves, Proc. 16th Coastal Eng. Conf., ASCE, 1978, pp. 628-690. 

Ikeno, M., R. Kajima, M. Matsuyama and T. Sakakiyama (1995): Character- 

istics of Short-Crested Waves and Currents Behind Offshore Man-Made Island 

Type Power Plant, Proc. 5th Int. Offshore and Polar Eng. Conf., pp. 168-175. 

Ishii, T., M. Isobe and A. Watanabe (1994): Improved boundary conditions to 

a time-dependent mild-slope equation for random waves, Proc. 24th Int. Conf. on 

Coastal Eng., ASCE, pp. 272-284. 

Isobe, M. (1987): A parabolic equation model for transformation of irregular 

waves due to refraction, diffraction and breaking, Coastal Eng. in Japan, Vol. 30, 

pp. 33-47. 

Isobe, M. (1994): Time-dependent mild slope equations for random waves, Proc. 

24th Int. Conf. on Coastal Eng., ASCE, pp. 285-299. 

Kubo, Y., Y.Kotake, M. Isobe and A. Watanabe (1992): Time-dependent mild 

slope equation for random waves, Proc. 23rd Int. Conf. on Coastal Eng., ASCE, 

pp. 419-431. 

Kotake, Y., M. Isobe and A. Watanabe (1992): On the high-order time-depend- 

ent mild slope equation for irregular waves, Proc. 39th Japanese Conf. on Coastal 

Eng., pp. 91-95 (in Japanese). 

Radder, A. C. (1979): On the parabolic equation method for water-wave prop- 

agation, J. Fluid Mech., Vol. 95, pp. 159-176. 

Serizawa, M., K. Ozawa, S. Mifune and M. Isobe (1990): Application of the 

parabolic equation for irregular waves to practical problems, Proc. 37th Japanese 

Conf. on Coastal Eng., pp. 26-30 (in Japanese). 


