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Abstract 

A nonlinear model of wave transformation due to a submerged breakwater is 
developed on the basis of the nonlinear mild-slope equations. Numerical compu- 
tation shows that significant amount of wave energy can be transferred from the 
fundamental component to higher harmonics by adjusting configuration of the sub- 
merged breakwater. In case of oblique incidence, wave direction as well as wave 
period changes due to the breakwater. These results implies the possibility to 
control wave period and direction as well as wave height. 

1 Introduction 

When waves propagate in a region of rapidly changing depth such as over a submerged 
breakwater, higer harmonic components are generated due to nonlinear effect. Various 
numerical simulations have been carried out for nonlinear wave transformation due to a 
submerged breakwater (Ohyama and Nadaoka, 1992, 1994; Tsubota et al., 1994). This 
implies that submerged breakwaters can change and control characterictics of waves 
such as wave height, peirod and direction, which can be utilized in coastal engineering. 
Since floating breakwaters are, in general, effective for controling only short period 
waves, combination of submerged and floating breakwaters may become an efficient 
breakwater system. Change of frequency spectrum over an offshore bar is an essential 
factor in predicting wave field and resultant wave-induced nearshore current. These 
indicate the importance to study wave transformation due to a submerged breakwater. 

Since generation of higher harmonics is a strongly nonlinear phenomenon, it cannot 
be reproduced by linear or weakly nonlinear wave theories. Isobe (1994) derived a set 
of nonlinear mild-slope equations which includes full nonlinearity and full dispersion. 
In the present study, numerical simulations are performed based on the nonlinear mild- 
slope equations to examine the function of a submerged breakwater to control not only 
wave height but also wave period and direction. 

2 Basic Equations and Boundary Conditions 

2.1    Nonlinear mild-slope equation 

Fully nonlinear and fully dispersive wave theories have been developed by Nadaoka et 
al. (1994), Nochino (1994) and Isobe (1994) among which the nonlinear mild-slope 
equations derived by Isobe (1994) is employed in the following numerical simulation. 
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In deriving the nonlinear mild-slope equations, the velocity potential, <j>, is expanded 
into a series in terms of a set of vertical distribution functions, Za, which are given a 
priori: 

N 
<f>{x,z,t) = £Z0(*;fc(x))/a(x,t) = £„/„ (1) 

where h is the water depth, x = (x,y) the horizontal coordinates, z the vertical coor- 
dinate, t the time, and N the total number of terms. 

By substituting the above expression into the Lagrangian defined by Luke (1967), 
applying the variational principle, and neglecting terms of the second order in bottom 
slope, the following equations can be obtained: 

ft f       1 1 Pl7^ dZ^ i)7^ 
971 + Z^m+ \zW*We + Ydf-dT^ + -^zV^fpVh = o      (2) 

f) dZ^ 
zi-jft + V(A^V^)" B°>eff> + (c<^ " c°e)vf0Vh + -^Zlfevnvh = 0    (3) 

where r\ is the water surface elevation, g the gravitational acceleration and 

Zl = Za\z=v (4) 

rn 
Aaf) = /    ZaZp dz (5) 

J—h 

R       r> dza dz0 B^ = ]_h^T-8z-dz W 
r oza „ , ,. 

Unknown functions in Eqs. (2) and (3) are /„ (a = 1 to N) and TJ which yield N + 1 
unknowns, whereas the total number of equations is also N + 1. No assumptions other 
than expanding the velocity potential into a series are made in deriving the equations. 
Therefore, the nonlinear mild-slope equations can be used to simulate even strongly 
nonlinear and strongly dispersive wave transformation. 

2.2    Vertical distribution functions 

Since the present study deals with wave transformation in shallow water, even-order 
polynomial functions are chosen as vertical distribution functions: 

Then, Eqs. (4) to (7) become 
Zl = C2^-1' (9) 

^ = h^TW^ (10) 

Ba0
 -  h 2(a+/?)-5 (11) 
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CaP = 2(a - 1) 
£2(a+P)-4 0oc+0)- 

where 

2(a + /?)-4     2(a + 0)-3 

+ V 

(12) 

C h 
(13) 

In the following calculation, the series is trancated at the second term (N=2) as 

2 

c/>(x,y,z) = fi(x,y,t)+ (1 + - )   f2(x, y,t) 

so that Eqs. (2) and (3) are rewritten in more specific forms: 

-f + ^f^ v/. + ^v,, 

Mh + V) 
h3 h v/1 + ^v/2 Vft = 0 

1 
+ 2 h h? 

(14) 

(15) 

d-q + V 
or 

2(fe + ?)t? 
ft3 

(A + »?)2 ^ 

(ft + .)v/1 + ^#v/2 3ft2 

/2V??Vft = 0 

+ (*+*m-*av/aVh 

/i2    dt 
4-V (ft + i/)3 ,  (ft+ «?)'/ V/l +        g,4       V-f2 3ft2 

(fe+t?)2(fe-2>?) 
3ft3 

2.3    Boundary condition 

V/iVft • 

5ft4 

2(ft + ??)3 

ft5 

4(ft + r?)s 

3ft4 h 

f2Vr]Vh = 0 

(16) 

(17) 

We first consider one-dimensional (on-offshore) wave transformation. At the onshore 
boundary, waves propagate only shoreward (i.e., positive x direction) with wave celerity, 
C so that for any independent variable, $ (= rj, f\ or /2), 

$ = $(x - Ct) (18) 

At the offshore boundary, waves consist of incident and reflected waves denoted by $;n 

and $r, respectively: 
$ = $in(z - Ct) + $r(z + Ct) (19) 

where the incident waves are given and the reflected waves are unknown. 
Differentiating the above two equations with respect to x and t, we obtain the fol- 

lowing boundary conditions: 

——h C-r— = 0    (at onshore boundary) 
at Ox ' 

-a-— C — 2 = 0    (at onshore boundary) 

(20) 

(21) 
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The water surface elevation, rfm, due to the incident waves can be given from an 
appropriate progressive wave theory from given water depth h, wave period T, and wave 
height H. The functions, /ijn and /&, should also be able to be given from the same 
wave theory, but an explicit expression is not available in any wave theory. However, 
since nonlinearity is normally negligible at the offshore boundary, linear relationships 
between rf1Ti, and fym and f2-m are derived as follows. 

One-dimensional linerized forms of Eqs. (15) to (17) for a constant depth are written 
as follows: 

"+T+a~ = 0 (22) 

which result in an eigenvalue problem for 77, f\ and f2. To solve the problem, we seek 
for a non-trivial solution of the following forms: 

v = aei(-kx-wt) (25) 

ft = cneW*-"*) (26) 

f2 = a2e
i(kx-u'i) (27) 

where u (= 2ir/T) is the angular frequency to be given, k the wave number to be 
determined from the eigen value, and a, a\ and 02 are the amplitudes. 

By differentiating Eq. (22) with respect to t and substituting it into Eqs. (23) and 
(24), r\ can be eliminated: 

i(d2h   d2}2\     d2h   hd2f2 

1 (d2fi     82f2\     hd2h  ,hd>f2      4 

Then substitution of Eqs. (26) and (27) into the above two equations yield the following 
two equations: 

,,,2 ^£2 
-(«! + o2) - hk2ar - —-a2 = 0 (30) 

9 

o> hk2 hk2 4 
(ffli + 02) —ai — a2 - —o2 = 0 (31) 

g A o An 

To obtain a non-trivial solution, the determinant of the above simultaneous equations 
should vanish, from which we can determine the wave number as 

2 _ 6h2cj2 - ISgh ± y/(6fe2tu2 - lhghf + 60fffe3^ 
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in which positive sign should be selected because positive and negative signs, respec- 
tively, yield positive and negative values of k2 corresponding to progressive and ev- 
ernecsent waves. Then the normalized eigenvector, (ri,r2), becomes 

rt = 

r2 

ax 3w2 

ai + o2      2ghk2 

0.2 3u2 

(33) 

(34) 
ai + a2      2     2ghk2 

By considering Eqs. (22), (25) to (27), (33) and (34), we finally obtain the following 
relationships: 

= 1- (^L _ l\ „_ (35) 
/lin ~ t> \2gTW     2 ' Vil 

/2: 
9_ 
iu \2     2ghk*)T,i' 

(36) 

The above relationships will be used even when a nonlinear wave theory such as Stokes 
or cnoidal wave theory is employed to give incident waves because nonlinearity is nor- 
mally not so strong at the offshore boundary. 

3    Computational Method and Condition 

Eqs. (15) to (17) are solved numerically by an implict finite difference scheme. The 
initial condition is still water and the time evolution of -q, /i and /2 is calculated by 
these equations as well as the boundary conditions (20) and (21). Spatial derivatives 
are evaluated at the center of the old and new time steps. This necessitates an iteration 
procedure, for which the Newton-Raphson method is employed in the present study. 

The computational domain is 500m long including a submerged breakwater or a 
step. The grid size is 1/64 of the wavelegth, and the time increment is 1/64 of the 
wave period. This fine grid size assures the accuracy of the numerical solution for the 
nonlinear mild-slope equations. 

To give incident waves, a third-order Stokes wave theory and a second-order cnoidal 
wave theory (Isobe and Kraus, 1983a, b) are employed depending on the Ursell param- 
eter. Stokes wave theory is employed when the Ursell parameter is less than 25, and 
cnoidal wave theory is employed otherwise. 

The incident wave conditions for close examination of the numerical result are shown 
in Table 1. 

Table 1   Incident wave condition for numerical experiment 

wave period 

(0 
wave height 

(m) 
water depth 

(m) 
Case 1 7.1 1.0 10.0 
Case 2 7.1 2.0 10.0 
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Two types of bottom configuration are employed: step type and submerged break- 
water type. Samples are shown in Figure 1 and detailed dimensions used are shown 
in Table 2. 

Table 2   Bottom configuration 

slope of step tan# 1/3, 1/5, 1/10, 1/20 
relative depth on step h,/h 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 

submerged breakwater 
relative crown depth hs/h 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 
relative crown width b/h 2, 4, 6, 8, 10, 12, 14, 16, 20, 22 

/  N Submerged . 
W breakwater  Case 1, tan 9 = 1/3, ha/h = 0.3,6/ft = 4 

-10 

(b)    Step 

200 <00        (m) 

Case 1, tan0 = l/3,/i,//i = 0.3 

0 

• 

^^p^&^*i^M~^^ 

10 
 /     .    ; 
t      .      ,      .     (      .      i      .      i      .      . 

— »?(m) 
— 7(m) 
— Depth (m) 
— M.W.L. (m) 
— Hight ratio 

Energy Flux 
(Kg m33-2) 

r)(m) 
j?(m) 

Depth (m) 
 M.W.L. (m) 
 Hight ratio 

Energy Flux 
(Kg mV2) 

MO 400 (in) 

Figure  1    Examles of calculated distribution of the water surface elevation, wave 
height, mean water level, and energy flux. 
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4    Result for 1-D Calculation 

Figure 1 shows examples of calculated distribution of the water surface elevation at 
two different time steps, wave height, mean water level, and energy flux. Waves are 
incident from left to right, (a) is for a submerged breakwater, and (b) is for a step. 
The energy flux is kept constant except for a small fluctuation which may have resulted 
from the error due to insufficient number of terms in the series expansion of the velocity 
potential. As can be seen from the water surface elevation, wave disintegration on the 
breakwater or step is significant. 

To examine the nonlinear wave disintegration, the temporal change of water surface 
elevation is transformed into a Fourier series at every point. Figure 2 shows the 
distribution of amplitude of the first six components. Spatial change of amplitudes on 
the step are periodic. 

The spacing between two adjacent peaks of the second harmonics is derived theoret- 

(a) Submerged 

breakwater Case l, tan0 = 1/3, ft,/* = 0.3,6/ft = 4 

as 

0.4 

0.2 - 

o - 

(b) 
0.4 

0.4 

0.2 - 

V\ */%/\^/\/\/>A /Wwv — ,*,(,„) 

Depth xlO-2(m) 
M(m) 
foil(m) 

 M(m) 
 M(m) 
  M(m) 

M(m) 

Case 1, tanfl = l/Z,h,/h = 0.3 

ww\ 

z 

Depth xl0-2(m) 
l%|(m) 
M(m) 
M(m) 

— M(m) 

200 400 (m) 

l7s|(m) 
M(m) 

Figure 2   Distribution of amplitude of various harmonics. 
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ically as (Massel, 1983) 
A2 = 27r/(fc2 - 2fci) (37) 

where k\ and fc2 are the wave numbers corresponding to the linear dispersion relation 
for u and 2u>, respectively: 

uj   = gk\ tanhfcife 

Aw1 = <7fc2tanhfc2/i 

(38) 

(39) 

The present result agrees well with the above theory, which implies the return spac- 
ing is predicted theoretically. However, the amplitude cannot be predicted accurately 
expecially for strongly nonlinear cases. Thus, it is examined in the present study in 
detail. 

Figure 3 shows the relation between the maximum amplitudes, |7?n| (n = 1 to 3), of 
the first three harmonics, and the slope, tan#, of the offshoreward face of a step. The 
maximum amplitude of higher harmonics increases with increasing slope. The effect 
of the water depth on a step is shown in Figure 4. In the figure, h3/h is the ratio 
between the water depth, hs, on the step and that, h, in the offshore region. Results 
are plotted for non-breaking cases for which hs/h > 0.3 for Case 1 and hs/h > 0.5 for 
Case 2. The maximum amplitudes of higher harmonics increase with decreasing water 
depth on the step. 

As can be expected from the periodicity of the amplitude of higher harmonics on 
the step which is shown in Figure 2(b), the amplitudes of various harmonics behind 
a submerged breakwater oscillate significantly with the width. Figure 5 shows the 
average amplitudes of the first three harmonics behind a submerged breakwater, (a) 
is for the incident waves of Case 1 and ha/h = 0.3, (b) for Case 1 and hs/h = 0.5, and 
(c) for Case 2 and hs/h = 0.5. For each figure, the return spacing, A2, of the second 
harmonics agrees well with that predicted by Eq. (37). The amplitude behind the 
breakwater becomes maximum for b = mA2 (m = 1,2, • • •), and minimum for b = (TO — 
1/2)A2, and the difference between the maximum and minimum values increases with 

0.6 
(m) 

0.4 - 

0.2 

Case 1 

0 

.' l
0U-<l>-i-J , J-4-9  1   1   1   1   |   ION 

1     ©"' 

~    . . A— —-"* ' "^ 

—1    1    1    1    1    1    1 1     1     1     1     1     1     1     1     1   -4- 

3|ma.\ 

0.1 0.2 
tan6 

0.3 

Figure 3   Relation between the maximum amplitude of various harmonics and the 
slope of the offshoreward face of a step. 
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0.6 
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Figure 4 Relation between the maximum amplitude of various harmonics and the 
water depth on a step. 

decreasing crown water depth. By comparing between (b) and (c), it is understood 
that the ratios of amplitudes of higher harmonics to the first harmonics grow larger for 
larger incident wave steepness. 

The above results imply that significant amount of wave energy is transferred from the 
fundamental component to higher harmonics and the amplitude of the second harmonics 
can become comparable or larger than that of the first harmonics behind a submerged 
breakwater by adjusting its configuration. 
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n > ' Case 1, hj/h 
0.6 n—i—i    i    i 

0.3 
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Figure 5  Relation between the average amplitude of various harmonics and the crown 
width of a submerged breakwater. 
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5    Basic Equations for Obliquely-Incident Waves 

When waves are incident obliquely to a region with parallel depth contours, the celer- 
ity, Cy, in the alongshore direction, y, becomes constant throughout the depth. The 
quantity Cv is evaluated at the offshore boundary as 

C„ 
v      sin B„ 

(40) 

where C0 and 0O are the wave celerity and direction at the offshore boundary.  Then 
the derivative with respect to y is converted to that with respect to t: 

d     i a 
dy Cvdt 

(41) 

If Eq. (41) is substituted into Eqs. (15) to (17), independent variables become only x 
and t. However, numerical solution could not be obtained due to numerical instability 
because the equations include the second-order derivatives with respect to t. Therefore, 
by considering the linear relationships (35) and (36), the following equations are used 
to eliminate the second-order derivatives: 

d2h 
dt2 

d2h 
dt2 

-gn 

-gr2 

drj 
It 
drj 
It 

(42) 

(43) 

Then Eqs. (15) to (17) become 

91 +  dt +      h2       dt  + 2 
d_h 
dx 

1 2{h + ri) 
h2 h Mh + V) 

h3 h 

(Mvfdh 
h2      dx 

1 J_ 
2C2 

dh   {  (h + r,)2df2 

dx h2      dx 

dt +      h?       dt 

dh 
dx 

= 0 (44) 

dv+  d_ 
dt     dx 

+ci 
dh   ,  {h + v)2dh 

dx 

dt 
+ 

+ (h + v)2(h- 

h2    dt 

1ri)dhdh 
3ft3 dx dx 

~ gn(h + r]) - gr2 

2(fe + V)V    chdh 
h3 dx dx 

{h + yf 
3h2 

0 

drj 
~di 

(45) 

(h + V)2dr, |   d 
dt     dx h2 

(h + V)3 dh +(h + r,f df2 

h2 

4(ft + vf 
h- 

3/i2     dx 5ft4     dx j 

(h + yf 
3ft2 ""•    5ft4 

2(fe + r))3ri    drj dh 

{h + nf dh j_ (h + v)4 dh 
• + - gn 

dt        h4     dt 

(h + r,)2{h - 2-q) dh dh 

gri 
(h + rif dr) 

m 

dx dx 
(46) 

3ft4     •" 3ft3 dx dx ft5 

The numerical solution method for the above equations is the same as that for normal 
incidence previously described. 
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6 Result for Obliquely-Incident Waves 

Once a numerical solution is obtained in terms of x and t as $(x,£), the solution in 
terms of x, y and t is written as $(x,< — y/Cy). Figure 6 shows the pattern of wave 
crests near an infmitively-long submerged breakwater with a trapezoidal cross section. 
Waves are incident obliquely from the lower boundary. 

For Figure 6(a), wave direction changes on the breakwater due to refraction, and 
secondary crests appear due to the nonlinear effect, but the secondary crests disappear 
behind the breakwater and the wave direction turns back to that of the incident waves. 
However, for Figure 6(b) in which the amplitude of the second harmonics grows larger 
than that of the first harmonics, secondary crests remain behind the breakwater and the 
wave direction is different from that of incident waves. The reason is as follows. Since 
celerities of all component waves must be the same in the y direction, higher harmonics, 
of which the wave celerities are smaller than that of fundamental component, should 
propagate in the direction closer to the shore-normal. Therefore, the predominant 
direction changes when higher harmonic components dominate behind the breakwater. 

7 Conclusion 

Numerical scheme for the nonlinear mild-slope equations is developed to examine wave 
transformation due to a submerged breakwater for normal and oblique incidence. 

Generation of higher harmonics for normal incidence to a step and a submerged 
breakwater is first examined. The amplitudes of higher harmonics on a submerged 
breakwater are larger for steeper offshoreward slope and for smaller crown water depth. 
The amplitudes of higher harmonics behind a submerged breakwater become maximum 
for b = TOA2 (m = 1,2, • • •), and minimum for b = (m — 1/2)A2. When the nonlinearity 
of incident waves is stronger, higher harmonics grow larger. 

Higer harmonics appear also for obliquely incident waves. When higher harmonics 
dominate behind the submerged breakwater, predominant wave direction chnges to 
keep the alongshore celerity constant. 

These results imply that, utilizing a submerged breakwater, we can control wave 
period and direction as well as wave height. 
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Case 1, 0O = 45,tan 0 = 1/10,hjh = 0.3,6//i = 8 

Case 1, 60 = 45, tan 6 = 1/3,/»,//» = 0.3,6/A = 4 

Figure 6   Change of crest lines due to a submerged breakwater. 
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