
CHAPTER 74 

A uniform mild-slope model for waves over varying 
bottom 

Libang Zhang1 and Billy L. Edge2 

Abstract 
A time-dependent mild-slope equation is derived, based on the formal 

derivation of Smith & Sprinks (1975), from which the higher-order dispersion 
relation for waves over uneven bottom is obtained. If only linear dispersion 
is used for steady waves, the equation (2.12) of Chamberlain & Porter (1995), 
referred as the modified mild-slope equation (MMSE), is recovered from this 
equation. To the leading-order solution, it is found that the modified curvature 
terms of the MMSE have significant effects, while the slope square terms are 
negligible in accordance with mild-slope assumption. Therefore, retaining all the 
modified curvature terms neglected in the MSE, the uniform model is developed. 

A numerical model using the finite element method(FEM) is developed to 
predict wave scattering by a varying bottom. In general, the uniform model can 
predict salient features of waves over various sea beds, such as sinusoidal beds 
and man-made bars. For sinusoidal beds, the results of the uniform model are 
in closer agreement with the experimental data than other established models. 
For man-made bars, the results of both the MMSE and uniform model are in 
closer agreement with the experimental data than the results of Kirby (1986). 
An important result of the FEM model is application to transformation of waves 
over arbitrarily-varying bathymetry. 

Introduction 
Surface wave scattering by rippled seabeds has been studied by many 

researchers during the past decade. Rippled seabed are used to represent 
both regular and irregular ocean bottoms. Davies & Heathershaw(1984) pro- 
vided solutions to the linear problem and verified their solutions experimen- 
tally. Mei(1985) concentrated his studies on the process close to the Bragg 
resonance condition. Dalrymple & Kirby (1986) studied a single sinusoidal 
bed for both resonant and non-resonant cases, using a boundary integral equa- 
tion method. The step-approximation model (Guazzelli et al. 1992), or the 
successive-application matrix (O'Hare & Davies 1993), in which the bed is di- 
vided into a series of very small horizontal shelves, was also developed to model 
the wave scattering by the rippled bed. Edge & Zhang (1996) first predicted 
random wave scattering by berms using P-M spectrum. 

Alternative methods related to the mild-slope equation(MSE), such as 
the modified mild-slope equation (MMSE), have been investigated extensively 
since it was derived by BerkhofF (1972) and Smith & Sprinks (1975). Kirby(1986) 
developed the equations to predict wave propagation over rapidly varying to- 
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pography, which is based on the concept of expanding the rapidly varying com- 
ponent on a very mild-slope bottom. Massel (1993) extended the mild-slope 
equation by using a Galerkin-eigenfunction method. Recently, Chamberlain & 
Porter (1995) presented several modified versions of the MSE (or MMSE) by 
using both variational and Galerkin methods. 

Kirby's model (1986) is limited to a rapidly-varying topography. The 
deficiency of the Kirby's model in prediction of the higher- and sub-harmonic 
resonance peaks was found by Guazzelli et al. (1992) and O'Hare & Davies 
(1993). Two of Chamberlain & Porter's models, i.e. Eqs.(3.2) and (3.3) of 
Chamberlain & Porter (1995), were shown to be ineffective in predicting some 
resonance peaks (see Fig.3 of Chamberlain & Porter, 1995). In other words, 
these models break down at some frequencies, similar to the MSE's breaking 
down as described by Kirby (1986). It means that the approximations of these 
models are not uniform, but are frequency-dependent. Therefore, to overcome 
the deficiency of the models mentioned above, the uniform model is developed to 
predict wave scattering by both slowly-varying and rapidly-varying components 
of beds uniformly. 

The first part of this paper presents the three-dimensional wave model 
based on Green's identity method for general topography. Secondly, the pa- 
per presents a numerical implementation for the finite element method (PEM). 
Thirdly, the uniform model is verified and the results for sinusoidal beds are 
given. Finally, numerical results of the uniform models for waves over the man- 
made bars are presented and compared with the experimental data and other 
numerical solutions. 

Governing equations for general topography 

For a small-amplitude wave with angular frequency w, it is assumed that 
the flow is incompressible and irrotational and that the pressure is constant at 
the free surface. The rectilinear coordinates (x,y,z) are fixed in space and z=0 
is located at the calm water level. The wave potential $(x,y,z) satisfies the 
equations: 

V2$ + $22 = 0,        {-h<z<0), (1) 

$« + g$z = 0,        at    z = 0, (2) 

Since the sea bottom is fixed at z — —h(x,y), the normal velocity vanishes; this 
implies 

$z + Vh • V$ = 0,        at    z = -h, (3) 

where V denotes the horizontal gradient operator, i.e. V = {d/dx,d/dy}. 

By utilizing the Green's identity method, Equations (l)-(3) can be com- 
bined to obtain the time-dependent equation governing the velocity potential 
(j>(x,y) and the wave number k(x,y): 

&t - V • {CGgW<j>) + (w2 - k2CCg)4> -gF<j> = Q (4) 

where 
u>2 = gk tanh kh, (5) 
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is leading-order dispersion relation, and 

F = ax(Vft • Vh)k + a2V
2h + a3Vfc • Vh/k + a^k/k2 + a6(Vk • Vk)/k3. (6) 

C(a;,j/) = w/fc and C9(aj,y)  = dw/dk are the wave celerity and the group 
velocity, respectively. The dimensionless parameters of a;    (i = 1,5) become 

ai = -<r(l - a2)(l - <rq) (7) 

a2 = -<r9(l - <r2)/2 (8) 

a3 = q(l _ a
2)(2q<T2 - 5<r/2 - q/2) (9) 

a4 = q(l - <r2)(l - 2<rq)/4 - (r/i (10) 

a5 = <?(1 - a2)(4<r2q2 - 4q2/3 - 2aq - l)/4 + <r/4 (11) 

Throughout this paper, the notations q = kh, Q = k(z + h), and <r = tanh kh are 
used for convenience. The detailed derivation of Eq.(4) is given in the Appendix. 

Higher-order dispersion relation 

The time-dependent MMSE can be further decomposed into the real and 
imaginary parts, which are corresponding to the dispersion relation and wave 
action conservation, respectively. Let 

4> = Aeie 

where A is the potential amplitude and 0 is the phase and is defined by 

V0 = k    6t = -w 

Separating the time-dependent equation into real and imaginary parts, the 
higher-order dispersion relation is obtained: 

or •.2 _ , .2   ,  rin itf      hi Att     ^V2A     V(CCg)-VA 
u,2 + GCg(k

2 - A2) + -f - CCg—A i—% gF,       (12) 

where w is defined in Eq.(5). If the frequency is fixed and temporal variation of 
amplitude is not considered, the effective wave number for the MMSE is 

*=*+_ + ___ + _ (13) 

Discarding the last terms, the effective wave number for the MSE (Liu, 1990, 
P35) 

-2     r2     V2A     V{CCg)-VA k=k+^+^U~ <14> 
is recovered. It is clear that the last terms in general MMSE will directly affect 
the wave phase prediction if they are comparable with the original terms in the 
MSE. 
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Correspondence to previous models 

For the monochromatic and steady waves, the general MMSE becomes: 

V-(CCgV</>) + k2CCg<l> + gF<t> = 0 (15) 

by using 
<t>tt = -<h>2. (16) 

The relations of the wavenumber slope and curvature with those of bottom, can 
be obtained from Vw = 0, i.e. 

X^X' (17> 
and 

T--/?1-r+^2      h2      , (18) 

where 
A = -g(l - <r2)/7, (19) 

fc = 2q\l-<r*){1-«1)h\ (20) 

-y = <r + q(l-<r2). (21) 

Thus the MMSE in specific case reads 

V • {CCgV<t>) + k2CCg<f> + g [fcV
2h + kfs{Vh • Vhj\ <j> = Q (22) 

where , , „    „ 
fc(kh) = a2 + ai/31/q, (23) 

f.(kh) = O! + a3/V<7 + a4/?2/<Z2 + aj/Sj/g*. (24) 

Using the notations of Massel(1993) and Chamberlain & Porter(1995), the fol- 
lowing relations are found: 

R1
00 = 2qf„    Rl0 = 2q*fc, (25) 

«i = fc    «2 = &/»• (26) 

Therefore, both Equation (34) of Massel(1993) and Equation (2.12) of Cham- 
berlain & Porter(1995) can be recovered from Eq.(4). Obviously, Eq.(4) for the 
MMSE is more general. The plots of i?J0 and R2^ have been done for checking 
with Massel (1993). 

However, if the water depth is constant but k is still arbitrary due to the 
variation of wave amplitude, the general equation is reduced to: 

<t>tt-V-(CCgV<l>) + (w2-k2CCg)<l>-g{a4V
2k/k2 + as(Vk-Vk)/k3}<j>= 0 (27) 

In this case the equations of Massel(1993) and Chamberlain & Porter(1995) fail 
to consider the variation of wavenumber k. Obviously, the equation (4) in this 
paper is more general. 
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Uniform model equation 

To exam errors induced by omitting the last terms, which consist of either 
curvature or slope terms, we compare the ratio of modified terms to the original 
term of the conventional MSE by using Eqs.(17), (18) and 

CC, = 97/(2*), (28) 

where , ,    v 
Rc(kh) = 2(a2 + atfi/q)/!, (30) 

and 
R.{kh) = 2(ai + atfx/q + a&fq* + asf32/q2)/^, (31) 

are functions of only kh. The plots of Rc and R, are presented in Fig. 1. It 
is found that approximately max\Rc,R,\ < 0.2 in Fig. 1. Nevertheless, from 
Eq.(29) it is clear that the relative errors still depend on both 

——,        and       (Vh-Vh). 

It is well known that the MSE was derived by neglecting all the modified terms 
based on the assumption that 

Vh      , 
M<<L 

In the following we will show that the slope square terms are negligible, but the 
mild-slope assumption does not mean that the terms proportional to bottom 
curvature (i. e. V2h) can also be neglected. For example, Massel (1993, pl09) 
mentioned an example that the curvature terms are quite significant even for 
small mean bottom slope for a sinusoidal bed: 

|Vft| = O.br « 0.3    \V2h\ = 0.2ir2 *s 2. 

Instead of using |V2ft|, dimensionless \V2h\/k is used in this paper. It 
can be proved that the slope square terms are higher order than the curvature 
terms, if the ratio of bed wave number to surface wave number is of unity order. 
For simplicity, let the sinusoidal bed be defined by 

h(x) = h0 — bsinKx, (32) 

where h0 is mean depth, K is bed wave number, and b is bed amplitude. It is 
easily found that 

|V2/t| = £|V*| A; k 
for sinusoidal bed case. It indicates that curvature terms depend not only on 
bed slope but also the ratio of bed wave number to surface wave number. Since 
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the modified terms are omitted in the MSE, the errors induced by the MSE will 
be significant in the lower frequency ranges. 

Moreover, the ratio of slope square terms to curvature terms in Eq.(22) 
can be found from Eq.(32): 

yc
H•2hh) = fJ{kh) cot Kx = 0{kh) (33) 

From Eqs.(23) and (24) it is seen that the ratio of /, to fc is of 0(1). It means 
that the magnitude of Eq.(33) depends on surface wave number k and bottom 
amplitude b. Generally, kb is small value, except for very high frequency waves. 
Thus based on this ratio of Eq.(33), it is clear that slope square terms are only 
comparable to curvature terms for very large k, i.e. in the very high frequency 
ranges. According to Guazzelli et al. (1992), the high-frequency waves are 
hardly scattered by bottom undulation. Therefore, if the mild-slope assumption 

Vh      , 

is applied, only slope square terms can be omitted, i.e. 

V • (CCgV<j>) + k2CCg<f> + gfcV
2h<f> = 0 (34) 

The conventional mild-slope equation (MSE) 

V • (CCBy(j>) + k2CCg(j> = 0 (35) 

is recovered, if the modified term (last term) in Eq.(34) is neglected. Since the 
magnitude of neglected terms (curvature terms) is depend on the ratio of bed 
wave number to surface wave number (K/k), the error induced by the MSE is 
frequency- dep endent. 

On the other hand, Kirby's equation (1986) is originally derived for a 
rapidly-varying bottom. For the fixed bottom, the surface wave number k 
should be smaller than bed wave number K. It means that the solutions of 
Kirby's model are also frequency-dependent, which have been confirmed by 
other numerical methods and experimental data. The error of the model based 
on Eq.(34) is more uniform over a large frequency range than other models, 
thus it is called uniform mild-slope model. 

Finite element method based on a weak form 

For simplicity, we limit the remaining parts to the problem of two di- 
mensional wave problems.For steady waves, the MMSE reads: 

(C7C7^.).+p^ = 0 (36) 

where 
p = k2GCg + gF (37) 
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The boundary conditions for a patch of rippled beds are 

<f>x = -ik{</> - 2&)    (*! < 0) (38) 

^ = ik<j>   (x2 > L) (39) 

where <f>i = elkx is the incident wave of unit amplitude, x\ and aj2 represent the 
upwave and downwave limits of the computational grid, and L is the length of 
computation domain. These boundary conditions have been given previously 
by Kirby (1986). 

Considering potential applications in the three dimensional wave, a FEM 
model is developed for general topography. It seems that the numerical model 
in Chamberlain & Porter (1995) is suitable for periodic topography. The FEM 
model has advantages in the three dimensional problems with complex geome- 
tries, where it is desirable to use irregular meshes. 

Multiplying the entire left hand side of equation (36) with a weight func- 
tion w, and integrating over the domain (0,L) gives the weighted-residual state- 
ment: 

fL{{CCa4>x)x + p</>}wdx = 0 (40) 
Jo 

Mathematically, the above equation is a statement that the numerical 
error is needed to be zero in the weighted-integral sense. The trading of differ- 
entiability from <f> to w provides the weak form 

/„ 
L{CGg</>xwx - p<jyw)dx - [CCgw<j>m] |J = 0 (41) 

The trading of differentiability from <j> to w can only be performed if 
it leads to boundary terms that are physically meaningful. The choice of the 
approximation <j> for weight function gives the boundary terms GCg{(j>)x<j), which 
has physical meaning of energy flux through a section. It is easy to find that the 
primary variable and the secondary variable are (f> and (<f>)x respectively. Thus 
[<j>x} |Q is the natural boundary condition. Using the notations of Reddy (1993), 
we have 

B{w,4)-l(w) = 0 

where 

B(w, </»)=/   {4>xwx - pcf>w)dx - [ikCCgw(j>x} |„, 
Jo 

and 
/(to) = - piWCgwfa] |x=0 

are bilinear and linear forms, respectively. For a typical element, <f> is approxi- 
mated by 
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where Nj are cubic shape functions and <f>j are unknowns at the nodes. The 
water depth h(x), slope and curvature of both h and k at each element in the 
FEM scheme can readily be evaluated as 

4 

h^^hjNj,    fc = £>^ 
=1 

8Ni      ,       A, dNj 

"<*<•> - ZJ 
hi Q2X '     a kxx ~ 2s ki Q2X • 

The FEM schemes based on weak forms for the MSE, EMSE and UMSE are 
similar but much more simple. Bubnov-Galerkin method is adopted, thus the 
solution shape functions are used as weighting function. 

It is worthy to note that most FEM models for water wave problems 
are established based on the functional formulation. For example, the hybrid 
element method of Mei (1983) and the modified hybrid element method of Zhang 
(1991,1996) are all based on variation of a functional. As noted in Reddy (1993), 
not all differential equations admit the functional formulation, and in order for 
the functional to exist, the bilinear form must be symmetric in its arguments. 
Since the weak form statement is equivalent to the differential equation and 
the specified natural boundary condition of the problem, the weak form FEM 
is used in this paper. Substituting the assumed approximate solution into the 
weak form (42), and following the procedure in Reddy (1993), the FEM is 
developed. Considering the fact that the coefficients of the FEM are high order 
functions of space, cubic shape functions are used here. 

Verification of numerical model 
In this section, the numerical solutions for sinusoidal beds and man-made 

bars are presented in Figs.2 ~ 4, and compared with experimental data. 

For the case of the bottom having only one sinusoidal component, there 
are two resonant peaks of reflection coefficients, which were shown numerically 
by Dalrymple & Kirby (1986) by solving the 2-D Laplace equation. Later it 
was confirmed by Davies et al. (1989) and O'Hare & Davies (1993). Consider 
the case of sinusoidal bed n = 2, b/h0 = 0.32, where h0 is mean water depth, 
b is amplitude of bed undulation, and n is the number of sinusoidal bars. The 
numerical results of the MMSE, uniform and Kirby's model are presented in 
Fig.2, respectively, to compare with experimental data of Davies & Heathershaw 
(1984). 

In Fig.2, it is seen that Kirby's model does not predict the second reso- 
nance peaks, while results of MMSE and uniform models are in good agreement 
with experimental data. Also it noted that the uniform model predicts the 
second peak better than the MMSE model. 

Consider now the case of a doubly-sinusoidal bed (chosen here to be 
of equal amplitude b).   The inclusion of a more rapid component makes the 
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bottom slope relatively larger, so the difference between the uniform model and 
the model of Chamberlain & Porter (1995) becomes significant. As indicated in 
Fig.3, Chamberlain & Porter (1995) overpredict reflection coefficients at higher- 
harmonic resonant peaks, if compared with experimental data (Guazzelli et al. 
1992). 

Numerical solutions and experimental results for the artificial bar field 
(Kirby & Anton 1990) are also studied. The bar field is periodic over intervals 
of width L, and can be conveniently represented by the Fourier series. The 
man-made bars have many sinusoidal components(Kirby & Anton 1990), some 
of which have shorter wavelengths than the surface wavelength, not belonging 
to rapidly-varying case. Since Kirby's model is valid only for rapidly-varying 
components, the slowly-varying components are not properly modeled. There- 
fore the overall reflections predicted by Kirby's model have larger discrepancy 
with experimental data than these predicted by the uniform model and MMSE 
as indicated in Fig A. 

The convergence of the numerical model is confirmed by checking the 
energy relation R2 + T2 — 1, where R and T are reflection and transmission 
coefficients, respectively. The maximum error is less than 10-5. 

Conclusions 

To overcome the limitations of Kirby's model, the uniform model for 
wave transformation over an arbitrary-varying topography has been developed. 
Several cases of sinusoidal bed configuration have been studied and presented to 
confirm the numerical models. Based on the comparison between the numerical 
results and experimental data, it is clear that Kirby's method is frequency- 
dependent. 

For sinusoidal beds, the numerical results of the MMSE, uniform and 
Kirby's model are all in good agreement with the experimental data of Davies 
& Heathershaw (1984), except at the second resonance peak (2k/K ~ 2), the 
uniform model predicts a reflection coefficient closer to the laboratory data 
than the other numerical results. For man-made bar case, it is shown that both 
the MMSE and uniform model give excellent comparison with experiments. 
Since Kirby's equation is originally derived for a rapidly-varying bottom, it be- 
comes less accurate as ripple-bed undulations become slower (i.e. 2k/K becomes 
larger). The uniform model is capable of modeling not only the slowly-varying 
components but also rapidly-varying of sea beds. 

The success of the uniform model in model tests and better agreement 
with experimental data than other models, suggest that the uniform model is 
more efficient and accurate tool for the prediction of wave transformation over 
general sea bed. An important result of the uniform model is application to 
reflection of wave energy from offshore bars and dredged material dump sites. 
In addition, the uniform wave model can be extended to further the work of 
Kirby (1984). 
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Appendix: Derivation of the time-dependent wave equa- 
tion 

The depth-integrated wave equation for monochromatic, linear waves 
propagating over ripple beds may be formulated following the Green's identity 
method of Smith & Sprinks (1975). The solution to Equation (l)-(3) may be 
expressed as 

$(a;, y, z, t) — f(q, Q)(f>(x,y, i) + (non — propagating    modes) (Al) 

where 
/ = cosh Ql cosh q (A2) 

is a function of z, k, and h. The propagation of waves is associated with only the 
propagating mode, thus extracting this mode component and applying Green's 
identity to f and $: 

J — h 

or 

f° (/V2$ + *f„)dz = - [/*, - $/,]°_h (A3) 
J —h 

Using (Al) and (A2) 
/« = k2f 

V$ = fX74> + <j>Vf 

V2$ = /VV + 2V<£ • v/ + <t>v2f 

*, |«=-h - -VA • {fV</> + <W) (A4) 

Inserting (A4) into (A3) 

/° (#2/2 + V2</>/2 + 2/V^ • V/ + 4>fV2f)dz = (^„ + wV)/ff|.=o + #,/|,=_„ 
*/ — /l 

Based on (A2), every term in (A5) is evaluated using the following 

V/ = /hVA + /fcV* 

V2/ - /^(Vfe • V/») + fhV
2h + 2fhkVh • Vfc + fkV

2k + fkk(Vk • Vfe) 

where fh = §£, /*, = §£,/w, = 0,/wfe = iwkJkk = 0, and derived in the 
following: 

/h = &(sinh Q — a cosh Q)/ cosh q 

fk = (Q sinh Q — q<r cosh Q)/(k cosh g) 

/h/, = 2<rfc2(cr cosh Q — sinh Q)/ cosh <? 

/fcfc = {Q2 cosh Q - 2<rgQ sinh Q - q2(l - 2a2) cosh Q}/(k2 cosh g) 

fhk = {(2<?0"2 — <r — q) cosh Q + (1 — q<r) sinh Q + Q cosh Q — Qcr sinh Q}/ cosh g 
(A6) 
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Applying Leibniz's rule, 

f (VV/2 + 2/W • Vf)dz + fVh • V^|,=_fc = V • (CCgV4>)/g        (A7) 
J — h 

Using the following integrations 

gf° k2(j>f2dz = k2CCa(j) 

/o 
sinh Q cosh Qdz = <r2/(l - a2) 

-h 

/0 
Q sinh Q cosh Qdz = {q(l + a2) - <r}/(l - a2) 

•h 

Ak f   Q cosh Q cosh Qdz = {q2(l - <r2) + 2g<r - <T
2
}/(1 - a2) 

J—h 

4fc /   Q2 cosh Q cosh Qdz = {2g3(l - <r2) + 2q2a - q(l + <r2) + <r}/(l - a2) 

and substituting (A6) and (A7) into (A5), finally the time-dependent Eq.(4) is 
obtained. 

It may be worth remarking that the terms in (A5) involving 

f _*/   f _i!L   , _sv 
Ih~ dk'  Thk~dhdk'  Jkk~ &k2' 

were mistakenly omitted by Smith & Sprinks (1975). Furthermore, Smith & 
Sprinks (1975) obtained the conversional mild-slope equation (MSE) by ne- 
glecting all the so-called 'forcing' terms, which are assumed to be of higher 
order. The validity of this assumption of higher order about the forcing terms 
must, however, be questioned. In the absence of current, similar treatment was 
made by Kirby (1984) (see Eq.17 of Kirby, 1984). 
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Fig. 1   Curvature and  Slope  Punctions(R ,  R ) 
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Fig.2  Singly-sinusoidal bed,  n = 2, b/h0 = 0.32 
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Fig.3 Doubly-sinusoidal bed,  n = 4,m = 2,b/h0 = 0.4 
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Fiq.4 Four man-made bars (bar spacing= 1 20cm) 


