
CHAPTER 104 

Generation of Infragravity Waves 

A.R. Van Dongeren, I.A. Svendsen and F.E. Sancho1 

ABSTRACT: In this paper the deptz-integrated, short wave-averaged 
nearshore circulation model SHORECIRC is used to study the generation 
of infragravity waves due to normally incident short wave groups on a 
plane beach. After linear separation of the incident and reflected long 
waves, it is shown that the incoming long wave shoals faster than Green's 
Law predicts for free waves. This indicates that energy is transferred 
from the short wave groups to the long wave. However, it does not shoal 
as quickly as Longuet-Higgins & Stewart's (1962) steady state theory for 
bound waves suggests. The outgoing long wave deshoals according to 
Green's Law but it is shown that energy is traded back and forth with 
the incoming short wave groups. Different shoaling and deshoaling curves 
can be found for different parameter choices. The work term in the long 
wave energy equation is used to explain these differences and ratio of the 
number of short wave groups to the surf zone width is confirmed to be 
an important parameter. As a consequence, the energy of the outgoing 
long wave can be larger or smaller than that of the incoming long wave, 
depending on the value of that parameter. Finally, the nonlinear version 
of the model shows the importance of the mean set-up on the generation 
of long waves, in particular very close to the shoreline. 

INTRODUCTION 

It is well-known that a forced long wave propagates with short wave groups 
at the group speed (Longuet-Higgins & Stewart, 1962) [LHS62 in the remainder]. 
When these groups propagate onto a beach, the short waves shoal and break. In 
the shoaling process the incoming, bound long wave gains energy and is released 
from the groups. The incoming long wave propagates shoreward, interacts with 
the breaking process, eventually reflects off the beach and propagates seaward 
as a free wave. The principle of this process is generally agreed upon, but the 
precise mechanisms by which energy is transferred to the long (or infragravity) 
waves are not. 

For the case of normally incident waves, two different infragravity wave gen- 
eration mechanisms have been proposed for the interaction with the breaking. 
Symonds et al.  (1982) assumed that the groupiness which existed outside the 
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breaker zone is destroyed by the breaking and that the short waves inside the 
surf zone will decay with a saturated wave height. This implies a time-varying 
break point which generates long waves while no long wave generation takes 
place inside the surf zone. 

Schaffer & Svendsen (1988) [SS88] examined the other extreme where all 
short waves regardless of their height are assumed to break at a fixed break 
point. This means that the groupiness outside the surf zone is transmitted into 
the surf zone where long wave generation can take place. 

It is likely that neither mechanism is exclusively responsible for long wave 
generation but that it is due to a combination of both effects. Therefore Schaffer 
(1993) [S93] merged the two extreme mechanisms into one hybrid analytical 
solution and showed the effects of parameter variations. 

Some field studies suggest that there is more energy in the free (outgoing or 
trapped) waves than in the incoming bound waves (Munk, 1949; Tucker, 1950; 
Elgar et al, 1992; Herbers et al, 1995 to name a few). This indicates that in the 
nearshore region energy has been transferred from the short waves to the long 
waves. However, other observations (Guza & Thornton, 1985; Kostense, 1984) 
show that the energies of the in- and outgoing long waves are about equal, which 
means that no net long wave energy was gained. 

In this paper the nearshore circulation model SHORECIRC (Van Dongeren 
et al., 1994) is applied to study the generation of infragravity waves on a plane 
beach with normally incident short wave groups. In the next section, the gen- 
eral governing equations of nearshore circulation are stated. Then, the linearized 
version of the model is used to study the growth of the amplitude of the incom- 
ing and outgoing long waves for different parameter choices. The linear long 
wave energy equation is used to explain the characteristics of the shoaling and 
deshoaling curves. It is shown that net energy can either be gained or lost de- 
pending on the values of certain parameters. Finally, the nonlinear version of 
the model reveals the importance of the nonlinear terms, in particular the mean 
set-up of the surface elevation. 

GOVERNING EQUATIONS 

The depth-integrated, time-averaged mass and momentum equations read 
(Van Dongeren et al, 1994; Svendsen & Putrevu, 1996): 

d(        d       f< 

dt'dXa\L
v»dz+Q-)=() (1) 

-xr    +     a—    —i +  a- /       yiaVip dz + -— /    uwaV1/3 + uwPVla dz 
at Oxa  \      h     j        OXa J-h0 OXa J(, 

+   g(h0 + C)^- + ~ (sa0 - fC Ta0dz)-T-t + T-l = o       (2) 
OX/3        poxa \ J-ho j        p p 

where the total current has been split into depth uniform and depth varying 
components: 

V« = T~ + Vla(x,y,z,t) (3) 
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which implies 

Jh0 

V\a dz = —C (4) 

It turns out that in this formulation the radiation stress Sap is defined as by 
Mei (1983). For a discussion of the details see Svendsen & Putrevu (1996). 

In (1) and (2), Va and ( represent the horizontal current velocity and the 
mean surface elevation, respectively. uw is the short wave velocity defined so 
that uw = 0 below through level, Qa represents the total volume flux and Qwa 

is the volume flux due to the short wave motion. & is the elevation of the wave 
trough, Talj is the Reynolds stress, h0 is the still water depth, while rf and Tp 
represent the surface and the bottom shear stress, respectively. The overbar 
denotes short wave averaging and the subscripts a and /? denote the directions 
in a Cartesian coordinate system. Fig. 1 shows the definitions. 
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Figure 1: Definition sketch. 

For the present purpose we will consider depth-uniform long waves in the 
shore-normal x-direction, which reduces the set of equations to: 

dt      dx 
(5) 

d_Q 
dt   + ox \ h I ox      p 

ld,Sx 

da P 
(6) 

These equations correspond to the forced nonlinear shallow water equations 
where the radiation stress gradient provides the forcing on the long waves. The 
equations are solved by finite differences using a second-order predictor-corrector 
method for time and horizontal space on a fixed rectangular grid. On the sea- 
ward side we specify an absorbing-generating boundary condition as derived by 
Van Dongeren & Svendsen (1996). In the linear version of the model a no-flux 
boundary condition is specified at the still water line while in the nonlinear 
version a moving shoreline condition is used (Van Dongeren et al., 1995). 
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LINEAR ANALYSIS 

The simplest possible case to analyze is a plane beach with a shelf and forcing 
generated by a bichromatic short wave group while using the linearized version 
of the model. This case provides valuable insights into the long wave generation 
mechanisms. 

Following SS88 and S93 we can write the radiation stress forcing as: 

( al(l + 26cos(f^-dx-Aut)), h > hb 

Sxx = ~pg(2n -hi ^ (7) 

( 7
2
/J2 (l + 26(1 - K) COS(/ ^-dx-Aut)),       h< hb 

where K is the parameter controlling the generation mechanism: K — 0 corre- 
sponds to the case of a fixed break point, while K = 1 represents the time-varying 
break point case, n — cg/c where cg is the group speed. a\ is the amplitude of 
the primary short wave in the group while the groupiness 6 — a<ifa\ is the ratio 
of the amplitude of the secondary wave and the primary wave. Au> = LOX — u>2 

is the difference frequency between the two short waves which is also the long 
wave frequency, j — 2ai/h is the saturated wave height over water depth ratio. 
hb is the breaking depth. It is important to notice that the forcing consists of 
a steady part - which causes a steady set-up - and a time-varying part which 
forces a long wave. In our analysis we are only interested in the latter and in 
the rest of the paper we show only the time varying part of the solution. 

It is assumed that the shelf is wide enough so that at the toe of the beach 
the incoming long wave corresponds to the equilibrium bound long wave for the 
flat shelf: 

1      sw 
0 = - -,   ,   sx r2, (8) 

where the subscript s corresponds to conditions on the shelf and S£) is the 
time-varying part of the forcing of (7). The outgoing wave is absorbed using the 
absorbing-generating boundary condition referenced above. 

Case 1: fixed breakpoint 

The first case considered is that of a fixed breakpoint (K = 0) corresponding 
to the mechanism proposed by SS88. In the example studied, the following 
parameter values are used: forcing frequency Aw = 0.422 s-1, primary wave 
amplitude oi(S = 0.4415 m on the shelf, groupiness 6 = 0.1, saturated breaking 
parameter 7 = 0.7, beach slope hx = 1/30 and shelf depth hs = 3 m. 

The solid line in Fig. 2a shows the envelope of the long wave versus the depth, 
nondimensionalized by the shelf depth. The surface elevations are normalized 
by a\ s 8/hB, so that the incoming bound long wave of (8) is 0(1) at the offshore 
boundary. In the Figure, the still water line is on the left-hand side while the 
toe of the beach is on the right-hand side. Notice the agreement of the model 
with the dashed line which corresponds to the analytical solution by SS88. The 
break point is located at h/hs = 0.45 and is indicated in the Figure. 

The long wave can be separated into an incoming and an outgoing long wave 
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Figure 2:   Case 1:   (a) Envelope of the total long wave motion vs.    depth : 
present model ( ) and analytical solution (- -); (b) Envelope of the incoming 
long wave:  present model ( ), Green's Law (—) and LHS62's steady state 
solution (- •); (c) Envelope of the outgoing long wave: present model ( ) and 
Green's Law (- -); (d) Reflection coefficient. 

using linear superposition of the surface elevation and the flux 

C = ? + (i + (r and Q = Qi + Qr (9) 

where £ is the steady set-up, subscript ; denotes the incoming wave and sub- 
script r denotes the outgoing wave. Also, we know the following relationships 
between the surface elevation and the flux of the incoming and outgoing wave, 
respectively: 

Vi — cg Q and *vr —        y y ^o S>r (10) 

which implies that the incoming wave essentially propagates with group speed 
cg and the free outgoing wave propagates with the shallow water wave speed. 
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This is confirmed by the computations.   Solving for Q and (T from these four 
equations yields 

6 = VTOc-?) + g       and       & = *(c-a-g     (11) 

The solid line in Fig. 2b shows the envelope of the incoming long wave. Note 
that the long wave shoals faster than as predicted by Green's Law ((" tx ft-1/4, 
the dashed line), which means that energy must have been transferred to the 
long wave. Also shown is the shoaling curve according to LHS62's steady state 
theory, Eq. (8) (the dash-dotted line, ( oc h~5/2 outside the surf zone), which 
grows much faster than the actual wave. This indicates that on a sloping beach 
the bound long wave does not have "time" to attain local equilibrium but that 
it depends on its history. Therefore, on the slope the forced long wave does not 
increase with depth as h~~5l2 as is assumed in the analysis of field data in some 
papers (e.g., Elgar et al., 1992; Herbers et al, 1995). 

In Fig. 2c the outgoing long wave (solid line) closely follows Green's Law 
(dashed line) which indicates that this wave is a free long wave. There are some 
oscillations noticable around the dashed line because energy is traded back and 
forth with the incoming short wave group, as will be explained below. 

Figure 2d shows the ratio of the amplitude of the outgoing wave and the 
incoming wave (the "reflection coefficient"). This ratio is by definition equal to 
unity at the shore. For the chosen parameter values, the ratio is larger than 
unity everywhere else, meaning that there is more energy in the outgoing wave 
than in the incoming wave, which indicates that energy has been transferred 
from the short waves to the long waves. 

As a tool to study this energy transfer in more detail we can use the linear 
long wave energy equation 

f + fi + ff, = „ (12) 
ot        ox        h0   ox 

where E is the long wave energy, Ef = pg( Q is the energy flux and the 
third term represents the work the short waves do on the long wave through 
the radiation stress. Averaging over the IG-wave period (denoted by the double 
overbar) eliminates the temporal variation and yields a balance between the 
energy flux and the work 

dx        h0   dx 

The two terms can be each split into an incoming and outgoing part 

9Eftj      dEf<r      Qi dSxx      Qr dSxx _ 

dx dx h0   dx        h0   dx 

Figure 3a shows the balance between the energy flux term (dashed line) and 
the work term (solid line) in (13) accross the domain for the same parameter 
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Figure 3: Case 1: (a) Work done on total long wave ( ) and energy flux (- -); 
(b) Work on incoming long wave; (c) Work on outgoing long wave; (d) Energy 
flux of incoming wave ( ), energy flux of outgoing wave (- -), and energy flux 
of total long wave (- •). 

values as in Fig. 2. Both terms are normalized by pg\Jghs8
2a\ g/h%. Figure 3b 

shows the work done on the incoming wave which is the third term in (14). It is 
negative accross the whole domain, which means that energy flux is gained. This 
is consistent with the finding of Fig. 2 that the incoming long wave increases 
faster in amplitude than a free long wave. Conversely, Fig. 3c reveals that 
the work done by the short waves on the outgoing long wave oscillates around 
zero, which means that energy is traded back and forth but that over the whole 
domain the long wave loses or gains very little energy. It essentially deshoals as 
a free long wave as was already seen in Fig. 2c. 

In Fig. 3d the energy fluxes of the incoming, the outgoing and the total 
long wave motion are shown, normalized by pgy/ghs8

2a\ s/h
2

s. Notice that the 
incoming wave already gains about 30% of energy flux seaward of the break 
point. The incoming long wave reaches its maximum energy flux at the shore- 
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line where it is fully reflected. The outgoing wave shows an oscillating energy 
flux. The total energy flux therefore becomes increasingly negative seawards as 
a consequence of the net transfer of energy from the short waves to the long wave. 

Case 2a: moving breakpoint 

The second case considered is that of a moving breakpoint (K = 1) cor- 
responding to the mechanism proposed by Symonds et al. (1982). The same 
parameter values as in case 1 are used. 
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Figure 4:  Case 2a:  labels as Fig.   2.   The breaking region is indicated by the 
vertical lines. 

Figure 4a shows the comparison of the long wave envelope as predicted by 
the model and the analytical solution by S93. The differences are due to the fact 
that in the analytical solution the breaking region (ranging from 0.41 < h/hs < 
0.48) is contracted into a point at h/hs = 0.45 wheras the model is capable of 
reproducing the breaking region itself. 
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Up to the point where breaking starts, the incoming long wave in Fig. 4b 
gains energy flux as before. Over the breaking region, however, the energy flux 
is now decreasing, a feature which is investigated in more detail below. Inside 
the surf zone (h/hs < 0.41) a standing long wave occurs due to the absence of 
forcing in that region, see Figs. 4b and c. Figure 4c shows that outside the surf 
zone the long wave again deshoals according to Green's Law. 

Finally, the ratio of the amplitudes of the outgoing wave and the incoming 
wave is shown in Fig. 4d. Though the long wave energy is reduced through the 
breaking region the amplitude of the outgoing wave is still about equal to or 
larger than that of the incoming wave. 
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Figure 5: Case 2a: (a) Work on incoming long wave; (b) Work on outgoing long 
wave; (c) Energy flux of incoming wave ( ), energy flux of outgoing wave (- 
-) and energy flux of total long wave (- •); The breaking region is indicated by 
the vertical lines. 

This is further illustrated by the direct analysis of the energy transfer in Fig. 
5. Panel (a) shows that in case 2a the work done on the incoming wave by the 
short waves in the breaking region itself is positive, which indicates an energy 
flux loss. This is consistent with the loss of amplitude shown in Fig. 4b. Inside 
the surf zone no forcing occurs, so the work is zero. 

Fig. 5b shows that through the breaking region the work done on the outgo- 
ing wave is negative so that energy flux is gained (in magnitude) when the wave 
propagates out. Seaward of breaking the work is oscillating around zero as in 
case 1. The according energy fluxes of the incoming, outgoing and total wave 
are plotted in Fig. 5c. 
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Case 2b: moving breakpoint with halved forcing frequency 

The results of case 2a are valid only for the chosen set of parameters. It turns 
out that a profound change occurs when the forcing frequency or the beach slope 
are varied. Either of these parameters control the number of wave groups in the 
surf zone, which is an important parameter, as will be shown below. 
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Figure 6:  Case 2b: labels as Fig.   2.   The breaking region is indicated by the 
vertical lines. 

The conditions of case 2a are repeated except that the forcing frequency 
is halved, Au> = 0.211 a-1. Again the deviation between the model and the 
slightly simpler analytical solution is negligible (Fig. 6a). Fig. 6b shows that 
the amplitude of the incoming wave increases outside of the breaking region and 
decreases in the breaking region itself, similar to the previous case. Inside the 
surf zone forcing is absent and a standing wave occurs, see Figs. 6b and c. In 
this case, however, the outgoing long wave loses amplitude when propagating 
out through the breaking region (Fig. 6c). This results in a reflection coefficient 
less than unity outside the surf zone, i.e. the long waves have lost energy in the 
breaking process (Fig. 6d). 
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Figure 7:  Case 2b:  labels as Fig.   5.   The breaking region is indicated by the 
vertical lines. 

Analysis of the energy transfer using the terms in (14) confirms this result. 
Figure 7a is similar to Fig. 5a, but Fig. 7b shows that contrary to the previous 
case the work the short waves do on the outgoing long wave is now positive, which 
means that the energy flux decreases in magnitude as the long wave propagates 
out through the breaking region. 

The reason for this different behavior is the phase difference between the 
short wave groups and the incoming and outgoing long waves. As the short waves 
propagate onto the beach, the phase shift between the associated incoming long 
wave and the groups grows from 0.5 x to about 0.6 x. This phase shift causes 
the work (which is the time-averaged product of the radiation stress gradient 
and the incoming long wave) to be negative so energy is transferred to the long 
waves. In the breaking region the forcing is varying in time (when the short 
waves in the group are smaller and break closer to shore) or constant (when the 
waves are larger and break further offshore). This causes the long wave-averaged 
work done on the incoming long wave to be positive in the breaking region. This 
behavior is independent of the period of the incoming wave groups. 

With the destruction of the wave groups by the varying break point, the long 
wave is released in the breaking region and propagates shoreward as a free wave, 
where it is reflected and propagates seaward. The sign of the work that the short 
waves do on the outgoing wave is then dependent on the relative phase between 
them, which is a function of the time it takes the long wave to propagate through 
the surf zone and back.   For a plane beach this time lag can be calculated as 
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twice the propagation time from the shore to the mean break point hi: 

fhi>     dh 4 

fgh 
where A T = 44.5 s in the cases considered here.   In case 2a the ratio of the 
time lag AT to the group period Tg = 2W/ALO is 

AT 

Ar = »rra_-f^ (is, 
Jo    hT \la h       hT V a 

T 
(16) 

This integer value means that the outgoing long wave is "in phase" with the 
incoming long wave in the breaking region (which is short relative to the long 
wave length). Because these waves propagate in opposite directions, the signs 
of the work terms are opposite as well. In case 2b the ratio A T/Ta is 1.5, which 
means the incoming and outgoing waves are in "anti-phase", which causes the 
work on the incoming and outgoing waves to have the same sign. The ratio 
A T/Tg essentially specifies the number of wave groups in the surf zone. As can 
be seen from (16) it depends on the forcing frequency, the beach slope and on 
the short wave amplitude at breaking. Instead of changing the forcing frequency, 
an equivalent variation of the beach slope would yield the same result. 

This ratio is equivalent to the parameter X which was already found by 
Symonds et al. (1982) and the slope parameter Sb = hxL),/hb used by SS88 
where L/, is the length of the surf zone and hi is the depth at breaking. Rewriting 
those parameters yields 

AuSh_ TT
2
 (AT)2 _ 

IMPORTANCE OF NONLINEAR TERMS 

To investigate the importance of nonlinearities on the results, the model is 
rerun with the parameters of case 2a but now using the nonlinear Equations 
(5) and (6). In this case it is impossible to linearly separate the incoming and 
outgoing long waves. Therefore, we will examine the terms in the nonlinear long 
wave equation, averaged over the IG-wave period 

d (I    Q3 .    \       Q dS: 

dx\2
P^ + P9CQ)+h^ + Un'° = ° (18) 

which is the nonlinear extension of (13). The work that the bottom friction is 
small and is neglected in the following. The energy flux and the work balance 
each other, as can be seen in Fig. 8a. It turns out that for the particular set 
of parameter values used here the same case run with the linearized equations 
(Fig. 8b) shows a change of sign of the terms. This is due to the fact that in 
the nonlinear version of the model the travel time A T is dependent on the still 
water depth h0 as well as the set-up (. In short, the set-up effectively changes 
the beach slope in the surf zone experienced by the long waves. Artificially in- 

cluding the mean set-up ( in the linear model reverses the sign of the terms, see 
Fig. 8c. In fact, it can be seen that Figs. 8a and c agree well, which indicates 
that the mean set-up is the most important nonlinear term. 
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CONCLUSIONS 

The SHORECIRC model has been used to study infragravity wave genera- 
tion. In the linear version of the model, the incoming and outgoing long waves 
can be separated. As expected, the incoming long wave already gains energy 
flux outside the surf zone due to the changing forcing but not nearly as fast as 
the local value of the LHS62 steady state theory for bound waves suggests. In 
the case of a fixed break point the energy flux gain continues inside surf zone, 
whereas in the case of a moving break point, it is found that the incoming wave 
loses energy flux in the varying break point region. 

In the case of a fixed break point the outgoing long wave is seen to exchange 
energy flux with the short waves with very little net gain over the domain, so 
that it essentially deshoals according to Green's Law. When the breakpoint is 
allowed to move, however, the outgoing wave either gains or loses flux depending 
on the phase between the short wave forcing and the outgoing wave. This gain 
or loss is dependent on a parameter which represents the number of wave groups 
in the surf zone. This result may explain the variation in the ratio of outgoing 
to ingoing wave energy found in field data. 

Extending the model to include the nonlinear terms shows the importance 
of the steady set-up over the other nonlinear terms. 
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