
CHAPTER 113 

LONG WAVE RUNUP ON COASTAL STRUCTURES 

Utku Kanoglu1 and Costas Emmanuel Synolakis2 

Abstract 

We present a general method for determining the runup and the amplifi- 
cation explicitly for nonbreaking long waves propagating over piecewise linear 
topography, using the linear shallow water wave equations. We associate each 
constant-depth segment and each linearly-varying depth segment with (2 x 2) 
matrices and we calculate the transmitted wave amplitude after propagating 
over any number of segments explicitly. We then extend our methodology to 
the three dimensional topography of a conical island. Our method is applica- 
ble in the design of dikes, sea-walls and other coastal structures. 

INTRODUCTION 

The September 2, 1992 Nicaragua tsunami, the December 12, 1992 Flo- 
res island tsunami, the July 12, 1993 Hokkaido tsunami, the June 2, 1994 
East Java tsunami, on October 2, 1994 Kuril Islands, Shikotan tsunami, the 
November 11, 1994 Mindoro Island tsunami, the February 17, 1996 Biak, Irian 
Jaya tsunami, and the February 27, 1996 Peru tsunami were eight major dev- 
astating geophysical events that caused severe property damage and killed 
an estimated 2000 people. Field observations raised new questions about the 
suitability of the standard paradigm of a tsunami model, i.e. a solitary wave 
attacking a plane beach. For one, most of the eyewitness reported waves 
which caused the shorelines to recede first before advancing; these waves were 
studied by Tadepalli and Synolakis and they are now called leading-elevation 
N-waves (Tadepalli and Synolakis, 1994). Then, practically all field-measured 
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runup distribution showed three-dimensional effects which had been counter- 
intuitive. For example, during the 12/12/92 Flores Island tsunami, 263 people 
were killed and two fishing villages completely annihilated on Babi Island, a 
small volcanic islet off Flores; all damage concentrated on the tsunami wise 
and wind-wave wise lee side of the island. During the 9/2/92 Nicaraguan 
tsunami, the runup varied by a factor of 4 between locations distant less than 
a mile form each other, suggesting that even though the tsunamis are long 
waves, local bathymetric features of much smaller length scale did influence 
the wave runup. A recent increase in tsunami incidence and an abundance 
of new observations of coastal effects added urgency to the resolution of the 
question to determine a priori how a given topography will affect the wave 
evolution. 

Besides tsunamis, the long wave theory presented here can be used for the 
calculation of the runup and evolution of certain wind generated waves particu- 
larly in the infragravity spectral band. The numerical solution of the nonlinear 
shallow-water wave equation were used to calculate the runup of wind swell 
(Raubenheimer et al., 1995). Also, it has long been known that the runup 
predicted by the nonlinear shallow-water wave equation is mathematically the 
same of that predicted by the linear shallow-water wave equation for the one 
slope beach case (Carrier, 1966; Synolakis, 1987). 

FORMULATION OF THE PROBLEM 

We will describe a new general method that will provide a closed form 
analytical solution to determine the relationship between the amplification 
factor and the incident wave amplitude for the two-dimensional topographies. 
Given that any physically realistic topography is unlikely to consist entirely 
of a single-sloping beach or a single constant-depth segment, and to allow 
the use of analytical (non-numerical) solutions, it is incumbent to be able to 
break down the physical propagation problem into a series of linear problems 
which can then be solved with standard method analytically. The proposed 
method of solution consists of representing a given topography by a series of 
constant-depth and linearly-varying depth segments. 

We will use the linear shallow-water wave equation to solve the propagation 
problem over linear topographies; this equation is 

Vtt ~ {Vx h)x = 0. (1) 

We introduce dimensionless variables using a reference undisturbed offshore 
water depth d as the characteristic length scale, and Jd/g as the characteristic 
time scale. With time harmonic dependence of the form rj(x, t) = ((x) e~iwt, for 
the wave evolution over the dimensionless constant-depth h(x) — hc, equation 
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(1) becomes, 
d2((x) 

dx2 + UJ
2
 C(x) = 0. (2) 

The general solution is 

•q(x,t) = {Axe ^+S1e^^}e-iw^ (3) 

where Ax and B\ are arbitrary constants. If the depth is linearly-varying and 
denned by h(x) = rax + n with m^O and n constant, the field equation is 

. . d2((x) dC(x)        2 ,,  N 
{mX + n)dx^+md^+UJ<:{x) = 0- (4) 

The eigenfunctions of the field equation are two zeroth-order linearly inde- 
pendent solutions of Bessel's equation, e.g. J0 and Y0. Then the solution for 
evolution over variable depth is 

V(x, t) = {A2 M2ujl) + B2 y0(2w>/i)}e-<w*, (5) 

with £ = J(x + n/m)/m, where A2 and B2 are arbitrary constants. 
From the solutions (3) and (5), the appropriate form of r\ is chosen for each 

segment. Continuity of the surface elevation and of the mass flux provides 
two equations at each transition point between the adjacent segments and 
the unknowns such as A\, Bi, A2, B2 can be calculated from these interface 
matching conditions. 

In general, an m-segment topography involves m-sets of (3) and (5) type 
eigenfunction expansions, each with 2 unknown coefficients. Given that the 
incoming wave height is known, (2m — 1) coefficients have to be determined, 
requiring (2m— 1) equations for closure. To this end, continuity of the surface 
elevation and of the mass flux boundary conditions must be considered at each 
transition point between the adjacent segments. These boundary conditions 
provide (2m — 2) equations. The conditions of transmission at the segment, 
or the condition of bounded solution at the coastline or perfect reflection off a 
wall provide one additional equation. Adding a new segment introduces two 
more unknown coefficients, but at the same time also allows to write two new 
boundary conditions. This extends the order of the system of equations by 
two. Thus the wave evolution over any topography composed of any number 
of piecewise linear segments can be calculated. 

Our method consists of establishing basic topography segments, i.e. a 
constant-depth segment, a linearly-varying depth segment. Each segment has 
a (2 x 2) matrix that incorporates its topographic feature. We associate each 
constant-depth segment of depth hr with a segment matrix, 
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Figure 1. Definition sketch of the Revere Beach topography (not to scale). 

(6) 

We associate each linearly-varying depth segment with hr(x) — mrx + n with 
mr 7^ 0 and n constant with the segment matrix, 

*Jpr 
J0{20Jy 

Ji(2w, 
y0(2o;yV) 

(7) 

with £pr = J(xp + n/mr)/mr. The subscripts p and r identify the transition 
point and the segment number increasing from the seaward to the shoreward. 

Using these topographic-feature matrices, it is possible to write a matrix 
equation between the unknowns of the eigenfunction expansion. We will pro- 
vide a specific example for application of this general method. 

REVERE BEACH 

A physical model of the Revere Beach -located approximately 6 miles 
northeast of Boston City of Revere, Massachusetts- was constructed at Wa- 
terways Experiment Station (WES), US Army Corps of Engineers Coastal 
Engineering Research Center (CERC), by Ward who investigated the beach 
erosion and flooding problems (Ward, 1995). Moreover it presented a unique 
opportunity to evaluate the predictions of the general method presented here. 
The model of the Revere Beach consisted of three piecewise linear, 1 : 13, 
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1 : 150 and 1 : 53 slopes from seaward to shoreward respectively, with a verti- 
cal wall at the landward end of the compound slope and it is shown in figure 1. 

Analytical Solution 

Alternative to the conventional method of solution -try to solve {2m — 1) 
equation numerically- using the general methodology presented here boundary 
conditions for each transition point can be written as a matrix equation; 

SWA1 = V1, (8) 

SnV1 = S12V2, (9) 

s22 V2 = S23 V3, (10) 

^33^3 = ^34^4, (11) 

and finally 
SwAi = Sn S\2S22 S23S33 K3iVA. (12) 

Here V\, V2, V3 and V4 are column unknown vectors for each segment. Using 
the naming style presented for the topographic-feature matrices, 

-M^VYii**^) '^ 

Ji(2^}   YlC-^) )      \Ji(^)   Y,{^ 

U^)   lo(^g) \l ( Jo(^)   YoC-^) 
Ji(^f)   Y,{^) )      I  Ji(^)   y1(=^i^ 

-l 
(j /2wv/Si\    Y (tuVhi} 

Notice that first the matrix equation (8) represents perfect reflection bound- 
ary condition, drj/dx = 0, since the topography has finite depth (hw) at the 
shoreline (x = 0). We evaluate the following integral to find time histories of 
surface elevation at any given location; 

+0O     

Vj(x,t)= | *(W)   {AjM^m) + BiYo(^§^)}  e-^du,       (14) 
—oo 

where j = 1,3 represents the segment number. The unknowns of the eigen- 
function expansion can be determined equations (8) through (12). Here $(w) 
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is the Fourier transform of the initial solitary wave profile located at x = xs and 
given by (2/3) u> cosech(aw) eVj)X' with a = 71-/27 and 7 = J3H/4 (Synolakis, 
1986). H is the dimensionless incoming waveheight. 

We evaluated the integral (14) at the shoreline (x = 0) using the contour 
integration technique to find an analytical expression for the maximum runup 
(Kanoglu, 1997). With asymptotic analysis, we found that the maximum 
runup for the Revere Beach can be given by 

TL = 2h7„1/iH: (15) 

the maximum runup depends only on the incoming waveheight H and on the 
depth at the wall hw. 

Experimental Results 

We performed the experiments 23.2m-long, 45cm-wide glass-walled flume. 
The wave maker was located 23.22m away from the wall. Ten wave gages were 
located to record time histories of free surface displacements as shown in figure 
1. Gage 4 was moved to a half-wavelength away from the toe of the 1 : 53 
slope. This gage was used to define the waveheight of the incoming wave and 
its location, ensured that all waves propagated the same relative distance of a 
half wavelength (L/2 = (l/7)arccosh\/20) between the reference location and 
the toe of the beach. This localization is the standard method for referencing 
the heights of solitary waves climbing up a sloping beach (Synolakis, 1986 and 
1987). Experiments were carried out at two different water depths, 18.8cm 
and 21.8cm. The experiments are described elsewhere in detail (Briggs et al, 
1997; Kanoglu, 1997). 

MAXIMUM RUNUP, REVERE BEACH 

3 4       5     6    7 

d = 18.8 cm,     V   Experiment 
Theory 

d = 21.8 cm,     A   Experiment 
 — Theory 

2 3        4      5    6   7 

Figure 2. Comparison of the maximum runup between the analytical solution 
and the laboratory data for two different depth d = 18.8cm and d = 21.8cm. 
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Figure 3. Comparison of the time histories of surface elevations between the 
analytical solution (evaluation of the integral 14) and the laboratory data for 
d = 21.8cm and H = 0.0378 case at three gages. Dotted lines represent the 
laboratory results. 

A comparison of theory predictions with laboratory data is presented here. 
We compared the maximum runup heights and the time series of surface ele- 
vations predicted by the general method with the laboratory data in figure 2 
and figure 3 respectively. 

THE CONTINENTAL SHELF AND SLOPE 

Our objective is to obtain the amplification factor A in the first segment 
and the reflection coefficient Ar in the third segment in terms of the incident 
wave amplitude At. We use general methodology to write a matrix equation 
to obtain analytical solution; 

5n A — 5i2 V2, 

S22 V2 = K23 V3, 

(16) 

(17) 

Combining the two matrix equations, it is possible to write the following matrix 
equation; 

Sn A = S12 S22
l K23 V3. (18) 

Using the naming style for the topographic-feature matrices, 
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Figure 4. Definition sketch for the continental shelf and slope topography. 
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-1 

(19) 

Here yt is the unknown scalar -To ensure a bounded solution at the coastline, as 
in the single beach case, the unknown coefficient in the eigenfunction equation 
for Vo must be set equal to zero. This gives a scalar unknown for this segment.- 
for the first segment and V2 and V3 are the column unknown vectors for the 
second and third segments respectively. 

The transmitted wave to the beach is given by 

+00 

m(x,t)= J   $(u)AJopdS)e-i»tdLj. (20) 

Again here <&(u;) associated with initial solitary wave profile. Amplification 
factor A can be determined from equation (19). Using the asymptotic analysis, 
the maximum runup can be given by 



1460 COASTAL ENGINEERING 1996 

R = 2.831 y/l/m! #5/4. (21) 

This is the same analytical expression that Synolakis (1986) found for the 
single sloping beach case, implying that at least for long waves the runup only 
depends on the beach slope closest to the shoreline. To better understand these 
results, different hypothetical topographies of the continental shelf and slope 
will be investigated next, by changing the transition point and the wave height 
H the effects of the slopes on the maximum runup are analyzed. Maximum 
runup calculations are based on the evaluation of the maximum of the integral 
(20). Maximum runup calculations are shown in figure 5 for the different ranges 
of parameters; i.e. H, hi, mi and m,2- It is clear from the figure that the most 
dominant parameter on the maximum runup is the slope of beach closest to the 
shoreline; i.e. mi. More parametric analysis can be found elsewhere (Kanoglu, 
1997). 

MAXIMUM RUNUP, INTEGRAL EVALUATION 
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Figure 5. The effect of the parameters rri2, hi and H on the maximum runup 
for the continental shelf and slope with mi = 1/20 -hi = 0 means topography 
only with m2 slope and hi = 1 means topography only with rrii slope-. 
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Figure 6. Island slope in a stepwise fashion. 

CONICAL ISLAND 

The overall good agreement between the analytic results and the labora- 
tory data for the two-dimensional topography of the Revere Beach suggested 
the implementation of a similar methodology, i.e. usage of piecewise linear 
topographies for the three-dimensional topographies. 

Analytical Solution 

Here we will use linear shallow-water wave equation in polar coordinates. 
Given the singularity of the equation of motion in the case of the conical island 
h(r) ~ m(r — a) -m and a are the slope and the waterline radius of the conical 
island, respectively- one method of removing it is to approximate the surface 
of cone with cylindrical boxes -Henceforth a cylindrical box will be referred to 
as a sill- in a stepwise fashion as in figure 6. For example in the segments, the 
basic solutions are 

Vj=  E oi(n0—uft) {Antie~^Jn(kr)+AniTH^(kr)}   r > b, 
{AnJn(kr) + BnYn(kr)} r, <r < rj+1, 

(22) 

where b is the radius of the conical island at the toe, k = cu/Jhj and j repre- 
sents the segment number. Given that the solution is known for evolution over 
a sill, the dividing the solution over the conical surface involves matching so- 
lutions at the interface of steps on segments. At the edge of each sill, in other 
words at a discontinuity in h, it will be required that the surface elevation 
and the normal component of the mass flux are continuous. At the shoreline 
(r == a); the later matching condition requires that drj/dr\r=a = 0. Again 
here instead of trying to solve the system of equations which can be set up 
from the matching conditions, we will use (2 x 2) matrices to get solutions as 
described two-dimensional case. Details of the analytical study are described 
by Kanoglu (Kanoglu, 1997). 
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Figure 7. Definition sketch of the basin (not to scale). 

Experimental Study 

We performed a series of large scale laboratory experiment -in a 30m wide 
and 25m long basin- at CERC for a conical island. Conical island -60cm high, 
7.2m toe diameter and 2.2m crest diameter and 1 : 4 slope- was located in 
the middle of the basin as shown in figure 7. We varied the water depth, the 
solitary wave height, the horizontal length of the source and the eccentricities. 
We recorded the time histories of surface elevation at 27 locations and we 
measured maximum runup heights at 24 locations around the island. The 
experiments are described elsewhere in detail (Liu et al., 1995; Briggs et al., 
1994; Kanoglu, 1997). In most cases, the maximum runup heights are the 
largest at the front of the island and it decreases gradually toward the lee side 
of the island. Because of the collision of the two trapped waves, there is a 
drastic increase in the maximum runup height at the lee side of the island. 
Furthermore, in some cases as in figure 8, the maximum runup heights at the 
lee side of the island are larger than that of the front side. 

We compared the maximum runup heights and the time series of surface 
elevations predicted by the general method with the laboratory data. Com- 
parisons for the maximum runup and time histories of surface elevation are 
shown in figure 8 and 9 respectively. 



LONG WAVE RUNUP 1463 

MAXIMUM RUNUP, d = 32cm 

0.08 

R 
0.06 

0.04 

0.30 

0.25 

R °-20 

0.15 

0.10 

t »-. I  v V   Analytic theory 
A   Laboratory data 

Ai V V 

V 

V 

A 
V 

A 
V 

A-  

V              V!            A 

V: 
A 

H = 0.0 ml 
A                      A ''A 

M 

A 

|      *        j                                    i        *        i                                   :X:X 
]           A          Vi                                                                                                                                                          V 

I     *      v  I                                                          \      «      4! 

v    !4A„     oth      v        i  |   H = 0.0^11 

100     150     200     250     300     350 

e 

Figure 8. Comparison between analytical solution and experimental results 
for maximum runup for two different waveheights H. 

CONCLUSIONS 

Comparisons between the analytical and experimental results are in good 
agreement for the maximum runup and the time series of surface elevation in 
both cases, i.e. the Revere Beach and the conical island experiments. For the 
conical island, we observe that the maximum runup height is largest in the 
front of the island and it decreases gradually toward the lee side of the island. 
Because of the collision of the two trapped waves, there is a drastic increase 
in the maximum runup height at the lee side. As suggested by Yeh (Yeh et 
al., 1994), our results also confirm the mechanism of catastrophe around Babi 
island. 
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