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WAVE TRANSMISSION PAST VERTICAL WAVE BARRIERS 

David L. Kriebel1 and Chad A. Bollmann 2 

Abstract 

Three theories for predicting regular wave transmission past vertical wave 
barriers are evaluated using three sets of experimental data. The three theories are: (1) 
the power transmission theory of Wiegel (1960), (2) and modified power transmission 
theory that includes effects of wave reflection, and (3) the eigenfunction expansion 
theory of Losada et al. (1992). Under deep and near-deep water conditions - which are 
typical of most design conditions - the theory of Wiegel is found to over predict wave 
transmission under most circumstances. The modified power transmission theory 
provides better agreement with the data. The eigenfunction method provides good 
agreement for deep wave barrier drafts but overestimates transmission for shallow 
drafts. 

Introduction 

For more than 30 years, estimates of wave transmission past vertical wave 
barriers (vertical wall breakwaters, sometimes called wave screens, wave fences, skirt 
breakwaters, or curtain walls) have been based primarily on the theory and 
experimental data published by Wiegel (1960). The "Wiegel Theory" has been adopted 
as the recommended practice by both the Army Corps of Engineers (1984) in the 
Shore Protection Manual and by the Naval Facilities Engineering Command (1982) 
in the Coastal Protection Design Manual 26.2. While other theories have been 
published since then, none has been as widely adopted for design purposes and none 
has been accompanied by new experimental data. 
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Despite the widespread use of the Wiegel theory, questions have arisen 
recently3 concerning its accuracy. Wiegel himself recognized that the theory was not 
physically rigorous and he considered it a first approximation based on some limiting 
assumptions (Wiegel, 1995, personal communication). In general, a comparison of 
Wiegel's theory to his own data shows that his theory tends to overpredict wave 
transmission under deep water conditions and underpredict transmission as the relative 
water depth became more shallow. Since most wave barriers are built in deep or near- 
deep water conditions, use of this theory in design may produce deeper wave barrier 
drafts, at greater cost, than would actually be required to achieve some desired level 
of wave transmission. 

Recently, several more sophisticated theories for wave transmission have been 
proposed based on numerical solutions of the boundary value problem for waves 
interacting with a vertical barrier. Liu and Abbaspour (1982) developed a numerical 
solution based on the boundary integral equation method, while both Losada, Losada, 
and Roldan (1992) and Abul-Azm (1993) developed numerical solutions based on the 
method of eigenfunction expansion. Compared to Wiegel's simple theory, these 
theories are more difficult to apply because they require complex matrix solutions. In 
addition, the numerical solutions have not been widely or rigorously verified through 
comparison to measurements. 

In this paper, we evaluate three different theories for predicting the 
transmission of regular waves past wave barriers and we then compare these theories 
to some new experimental data for wave transmission past vertical wave barriers. The 
three theories that are evaluated include: (1) the original power transmission theory 
of Wiegel, (2) the eigenfunction expansion theory of Losada et al. and Abul-Azm, and 
(3) a modified power transmission theory which was developed in the course of this 
study. This modified theory is, like the original Wiegel theory, based on the wave 
power transmission past the wave barrier and, like the Wiegel theory, predicts the 
wave transmission is a simple closed-form equation. Unlike the original derivation, 
however, the modified theory accounts for the effects of partial wave reflection from 
the barrier and this results in different (lower) transmission than is predicted by the 
Wiegel theory 

These theories are then evaluated using laboratory data from three different 
sources. This includes the original Wiegel data as well as additional laboratory tests 
data published by Peratrovich, Nottingham & Drage, Inc. (1992) based upon tests 
conducted by the British Columbia Research Corporation (BCRC). The third set of 
data was then collected as part of this study and is based on experiments conducted at 
the U.S. Naval Academy Hydromechanics Laboratory (NAHL). 

Based on discussions at a Wave Barrier Design workshop, held by Peratrovich, 
Nottingham & Drage, Inc. in Seattle, Washington, on April 24-25, 1995 
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Definition of a Vertical Wave Barrier 

A definition sketch of a vertical wave barrier is shown in Figure 1. The wave 
barrier consists of an impermeable vertical wall with a draft or penetration, w, in 
water of depth d. The wave field consists of incident regular waves with height ff, and 
frequency o, along with transmitted waves of height H,=K,H„ and reflected waves of 
height H=KrHt, where K, and Kr are the transmission and reflection coefficients. The 
water depth is assumed uniform on both sides of the wall so that the wave length, L, 
and the wave group velocity, Cg, are equal on both sides. If we define the 
wavenumber as k = 2n/L, then the wave transmission is fundamentally dependent on 
two dimensionless variables: the relative water depth Jed and the relative barrier 
penetration kw. 

Hi 
Wave 

Kr*Hi       Barr'er 
Kt*Hi 

-777777- -777777 

Figure 1. Definition sketch of wave interaction with a vertical wave barrier. 

Wiegel Power Transmission Theory 

The Wiegel theory is based on the concept that wave motions behind the wall 
(downstream) are related to the wave power transmission below the wall. Wave power 
is computed as the depth-integrated product of wave induced dynamic pressures, p, 
and wave-induced horizontal fluid velocities, u, time-averaged over one wave cycle. 
Wiegel then assumed that the net wave power transmitted behind the wall (over the 
full depth) was equal to the fraction of the incident wave power below the bottom of 
the wall as 
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TO T -w 

±ffplutdzdt = ±ffpiuidzdt (1) 
0  -d 0   -d 

Substituting the expressions for dynamic pressure and horizontal fluid velocity from 
linear wave theory and carrying out the integration then leads to the solution for the 
transmission coefficient given by Wiegel (1960) as 

K,= TF
m (2) 

where we introduce the transmission function, TF, which is given by 

T = 2-Hd-w) + sinh2k(d-w) 
F 2kd + sinh2M ( } 

Modified Power Transmission Theory 

In the modified power transmission theory, the same basic approach is used but 
the effects of wave reflection are also considered. This time, the dynamic pressures 
below the barrier are assumed to be given to first order by the sum of incident and 
reflected pressures, />, + pr Because pressures are additive, the net pressure acting on 
a vertical plane below the wave barrier is greater than that assumed by Wiegel. In a 
similar way, the horizontal fluid velocities below the wave barrier are modified by 
reflection. However, the effective velocity is u{ - u r and is reduced from that assumed 
by Wiegel. 

Based on the above arguments, the transmitted wave power downstream can 
be equated to the net wave power transmitted under the barrier as 

TO T -w 

J J JPt Utdz dt   =   J J / <P,+Pr) («/-«,) * dt (4) 
0  -d 0   -d 

Substituting the expressions for dynamic pressures and horizontal fluid velocities from 
linear wave theory and canceling common terms then gives: 

K? = (1-K?)TF (5) 
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By including the effect of the reflected wave, the solution given above contains 
two unknowns and cannot be solved without introduction of another relationship 
between K, and Kr Since equation (5) implicitly assumes that there are energy losses 
in the system, the necessary relationship is one that guarantees conservation of fluid 
mass, or continuity of the fluid velocities, below the wave barrier as u, = M, - ur. 
Ignoring any phase shifts that may occur across the wall, and assuming that velocities 
are described by linear wave theory, the matching condition requires that 

*,= !-*, (6) 

Substitution of equation (6) into equation (5) then gives the following solution 
for transmission coefficient from the modified power transmission theory: 

2 7> 
K' = TTTF • 

where the transmission function TF is defined in equation (3). Because of the inclusion 
of the effects of wave reflection, equation (7) predicts wave transmission coefficients 
that are smaller than those predicted by the Wiegel theory in equation (2). This may 
be seen most readily in equation (5) where it is clear that the effect of wave reflection 
(with reflection coefficient Kr greater than zero but less than one) is to decrease the 
wave transmission compared with that predicted by Wiegel. 

The modified power transmission theory is, like the Wiegel theory, an 
approximation of the actual wave transmission process. From a theoretical standpoint, 
the method appears inconsistent because the usual balance of incident, reflected, and 
transmitted wave energy is not preserved. In addition, the modified theory, like the 
Wiegel theory, produces inconsistent results when taken in shallow water limit. 
However, the method is intended as a simple engineering solution and, as will be 
shown, it provides significantly better results when compared to measured wave 
transmission than the Wiegel theory for most conditions of interest. 

Eigenfunction Solution 

Because of the theoretical limitations of the power transmission theories, it is 
next of interest to consider mathematically exact solutions for linear water wave 
interaction with a thin vertical barrier. Such a solution has been given by both Losada 
et al. (1992) and Abul Azm (1993) based on eigenfunction expansion methods and 
their solution will be further considered here. In this paper, the method will only be 
presented in a summary form and the reader is referred to the original papers for a 
more thorough description of the method. 
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The eigenfunction expansion method involves solution for the velocity 
potentials on the upwave side (wavemaker or incident wave side) and on the 
downwave side (transmitted wave side) of the wave barrier. These upwave and 
downwave potentials must then be appropriately matched at the location of the wave 
barrier (x=0). Following Dalrymple and Martin (1990), these potentials must be 
harmonic in time with frequency o and must have a spatial dependence (in x and z) 
given by 

K = z.*~ik,x + E K V*"*       ** = z.«"*-itw'**   (») 

Equation (8) automatically satisfies the requirement that the velocities must be matched 
at all elevations on and below the barrier. In this form, the first term in each velocity 
potential is the incident progressive wave mode while the terms in the summation 
includes both the scattered progressive wave (n=l) and the evanescent wave modes 
(«> 1), all with unknown complex amplitudes Rn. 

The functions Z„ in equation (8) describe the depth-dependence of the wave 
modes and are given by 

igH, cosh ArW+z) 

"     la      cosh*.// w 

The wavenumbers kn are given by the solution of the dispersion equation 

a2=gkntmhknd (10) 

where the first (real) root is the linear progressive wavenumber, fc, = k, and where 
there are then an infinite set of imaginary roots for «> 1. 

The solution for the complex amplitudes R„ must satisfy two additional physical 
requirements: (a) the velocities must be zero on both sides of the barrier in the upper 
region where -w<z<0, and (b) the velocity potentials (or equivalently the dynamic 
pressures) must match in the gap below the barrier where -d<z<-w. As a result, two 
distinct equations (from upper and lower regions) are obtained - the so-called dual- 
series relationships noted by Dalrymple and Martin (1990) - and both must be 
satisfied simultaneously to find the unknowns Rn. 

It may then be shown that two equivalent methods may be used to satisfy the 
matching conditions: one through a least squares procedure and the other through a 
more direct procedure. In the first approach, used by Losada et al. (1992) and Abul- 
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Azm (1993), the matching conditions are first applied locally, retaining the vertical 
(z) dependence. The resulting dual series relationships are then combined and re- 
written as one mixed boundary condition which must equal zero over the full depth. 
This combined function is then solved in a least-squares sense in which the square of 
the function is minimized. In a second approach, used in this paper, the matching 
conditions are applied and are again combined into one mixed boundary condition. 
This combined function is then, however, multiplied by the orthogonal functions Z„ 
and depth-integrated over the full depth. This results in a single matrix equation that 
can be solved directly without the need a least-squares solution. 

Following the second method, the mixed boundary condition to be satisfied, 
denoted G(z) as in Losada et al. (1992), is defined for the upper and lower regions as 
follows. In the upper region, the horizontal velocities (u=d<b/dx) are set equal to zero 
at the wave barrier (x=0) resulting in 

N 

G(z) = -*, Z, + £ R„k„Z„ = 0 -w<z<0 (11) 

In the lower region, the velocity potentials from equation (8) are matched directly 
under the wall (x=0) as 

Zi+ZXz„ =Zi-XXz„ (12) 

Following cancellation of the leading terms, and after multiplying by kt to make 
equation (12) dimensionally consistent with equation (11), the remaining portion of 
the mixed boundary condition is obtained as 

N 

G(z) = 2 *, Y, R„Z„ = 0 ~d<z < -w (13) 

The mixed boundary condition G(z) can then be satisfied in the usual way by 
employing the orthogonality properties of the depth-dependent eigenfunctions Zn from 
equation (9) as 

/ 
G(z)Zmdz = 0 (14) 

d 

This yields the following set of matrix equations which must be solved for the 
unknown amplitudes Rn 
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f:Rn^kiXnm
+knY„m) = k1Ylm (15) 

where the functions Xm and Y^, are defined by Losada et al. (1992) and are given by 

X__ = fZnZmdz (16) nm 

-d 

0 

Y nm [ZnZmdz (17) 

Once the matrix in equation (15) is solved for the unknowns Rn, the 
transmission coefficient is obtained from the first term, Rv The reflection and 
transmission coefficients for the progressive wave modes are given by 

*, = !*, I        *, = |i-*il (18) 

Numerical computations have shown that the solution obtained by employing the 
orthogonality properties of the eigenfunctions is numerically equivalent to that 
obtained by Losada et al. (1992) using the least-squares solution procedure. It is noted, 
however, mat the matrix in equation (15) is somewhat easier to solve than that given 
by Losada et al. in that it has stronger diagonal dominance. 

Comparison to Data 

The three theories for wave transmission past vertical wave barriers are now 
compared to available laboratory data for regular waves. Two sources of published 
data were considered: (1) the data given by Wiegel (1960) and (2) the data given by 
Peratrovich, Nottingham, and Drage (1992) from tests conducted at the British 
Columbia Research Corporation (BCRC). These data were then supplemented by 
additional data collected in the Naval Academy Hydromechanics Laboratory (NAHL). 

The NAHL tests were conducted in a wave tank 120 feet (36.6 m) long, 8 feet 
(2.43 m) wide, and 5 feet (1.52 m) deep. A thin rigid wall (2 inches or 5 cm thick) 
was placed about 60 feet (18.3 m) from the wavemaker. The wall was supported at the 
sides of the tank and was also backed by an aluminum frame to prevent deflection of 
the wall. With the fixed water depth, four wall penetrations were tested producing four 
values of the relative wall penetration, w Id, was 0.4, 0.5, 0.6, and 0.7. 
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In these experiments, 80 tests were performed with regular waves. The wave 
periods varied from 0.9 sec to 2.5 sec and wave heights ranged from 1 in (2.5 cm) to 
almost 9 inches (23 cm). Combinations of these parameters were used to obtained 
values of wave steepness, H, IL, between 0.01 and 0.06 with most tests being in the 
range of 0.02 to 0.04. Incident waves were measured with a fixed wave gage near the 
wavemaker while transmitted waves were measured with the fixed gage located about 
15 feet (4.6 m) behind the wall. In all tests, a series of 5 to 10 waves of uniform 
height was generated and measurements were limited to exclude any effects of wave 
reflection from the beach landward of the wall or from the wavemaker. 

Figures 2a through 2h present comparisons of measured and predicted 
transmission coefficients for regular waves. Each figure represents a specific relative 
water depth, d/L. Transmission coefficients are then plotted as a function of the 
relative wall penetration, w/d. Note that in some cases where more than one source 
of data is used, the relative water depths were approximated in order to compare the 
various theories and data sets on the same graph. As an example, in Figure 2b, tests 
conducted by Wiegel used a relative depth of 0.68, while tests conducted by BCRC 
used a relative depth of 0.73. Theoretical results were based on an approximate 
average value of d/L=0.70. 

Figures 2a, 2b, and 2c show measured and predicted wave transmission for 
deep water conditions where the relative depth is about 0.5 or higher. In these figures, 
it is evident that the Wiegel theory overestimates the wave transmission while the 
modified theory provides much better predictions at all values of relative depth and 
wave barrier penetration. For those cases where the penetration reached one-third to 
one-half of the water depth, wave reflection from the wave barrier is expected to have 
been most pronounced. It is for these conditions that the differences between the two 
theories are particularly large and the modified theory, which includes the effects of 
wave reflection, provides a significant improvement. The eigenfunction solution 
overestimates the transmission for small wall penetrations but then agrees with the 
modified theory and predicts the transmission quite well for deeper wall penetrations. 

All other cases shown in Figure 2 represent intermediate or transitional water 
depths. In Figures 2d, 2e, and 2f it is evident that the modified theory yields improved 
prediction of wave transmission for most wave barrier penetrations when compared 
to the Wiegel theory. For barrier penetrations of 0.2 or less (wave barrier penetrations 
just below the wave trough level), both theories underpredict the measured wave 
transmission. For cases of deeper penetration, the Wiegel theory again tends to 
overestimate transmission while the modified theory is more accurate. In these cases, 
the eigenfunction solution again overestimates transmission for small wall penetrations 
and agrees with the modified power transmission theory - and with the data - at larger 
wall penetrations. 
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In Figures 2g and 2h, the relative depth is fairly shallow (though still greater 
than the normal limit between intermediate and shallow water wave conditions) and 
results of the three theories are mixed. Of the two power transmission theories, the 
Wiegel theory generally provides better predictions than the modified theory. Unlike 
the deep water conditions, the Wiegel theory no longer overestimates transmission 
and, in fact, has a tendency to underestimate transmission. The modified theory 
consistently underestimates the transmission more severely. In these "shallow water" 
conditions, the eigenfunction theory tends to overestimate the transmission at all values 
of wall penetration until the wall penetration is over 90 percent of the water depth. 

Conclusion and Discussion 

Results presented in this paper indicate that for most conditions of interest in 
engineering design - for deep water conditions with large wave barrier penetration 
(typically to mid-depth or deeper) - the Wiegel theory generally overestimates wave 
transmission while both the modified power transmission theory and the eigenfunction 
expansion theory produce more accurate predictions with little bias toward over or 
under-prediction of wave transmission. Neither the modified power transmission 
theory nor the eigenfunction expansion method produce improved estimates of wave 
transmission under all conditions, however. In near-shallow water, the modified 
theory tends to underestimate wave transmission while, for these same relative depth 
conditions, the eigenfunction method tends to overestimate wave transmission. 

One puzzling feature of the results in Figure 2 is the degree to which the 
modified power transmission theory agrees with the complete eigenfunction solution 
for certain conditions, namely for deep water and large wall penetrations. This can be 
explained by considering the first term in the eigenfunction expansion. From equation 
(15), if n=m=l, the leading-order behavior of the eigenfunction solution is 

R = »  (19) 
2Zn+7n 

Kiy' 

The integrals Y„ and Xu may be expressed in terms of the transmission function, Tp, 
in equation (3) and it can be shown that Xn « TF and Yn » 1- £ As a result, the 
leading-order wave transmission from the eigenfunction solution can then be obtained 
from equation (11) in the following form 

K'=1-Ri=T7T (20) 
1       1F 

This result is identical to that obtained from the modified power transmission theory 
in equation (7). The modified power transmission theory is therefore consistent with 
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the leading-order behavior of the progressive wave modes in the eigenfunction solution 
and is valid for conditions where the evanescent wave modes are not expected to be 
significant. 

For conditions where the evanescent modes are important (small wave barrier 
penetrations), the eigenfunction solution tends to overestimate wave transmission and 
is less accurate than would be expected. The reason for this appears to be that 
frictional losses become important due to flow separation at the bottom of the wave 
barrier. In the NAHL tests, both dye studies and velocity measurements using an 
acoustic doppler velocimeter confirmed the presence of a large vortex at the bottom 
of the wall. The inclusion of friction in the eigenfunction solution dramatically 
improves its predictive ability and this will be the subject of future work. 
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Figure 2a-2h. Comparisons of three theories to measured data for regular wave 
transmission past vertical wave barriers: (a) d/L=0.79, (b) d/L=0.70, (c)d/L=0AS, 
(d) d/L=0.39, (e) d/L=0.33, (f) d/L=0.27, (g) d/L=0.23, and (h) d/Z,=0.18. 




