
CHAPTER 199 

Wave impact beneath a horizontal surface. 

D.J.Wood * and D.H.Peregrine * 

Abstract 

Many coastal structures and natural coasts have openings, overhangs 
and projections which are open to impact by incident water waves. 
The sudden impact of a wave on a rigid surface leads to a rapid rise 
of pressure and consequent violent water motions. We consider the 
wave impact on the underside of a projecting surface. The exam- 
ple discussed is that of a flat deck close to the mean water level. A 
pressure-impulse approach is used, which has the advantage that given 
a solution for one problem it is possible to select pressure-impulse con- 
tours which give the solution to related problems. The pressure gradi- 
ent on the underside of the deck is especially strong near the seaward 
edge of the impact region, so this is a region where any projections on 
the structure's surface may be subject to strong shearing forces. On 
the other hand the maximum pressure-impulse is at the landward end 
of the impact zone, it is here that the deck is most likely to be 'blown' 
upward. 

Introduction 

There are a number of circumstances in which the effect of the upward impact 
of a wave beneath a rigid horizontal surface needs to be estimated. For offshore 
oilrigs the lack of good estimates of such upward impacts leads to designs where 
the main platform of rigs is built to be out of reach of 'green water'. This 
may not be an option for some coastal structures, including piers and jetties, 
and temporary works in inter-tidal zones. Here we present pressure-impulse 
calculations for an impact on a horizontal surface near the surface of water of 
finite depth. For convenience we refer to the rigid surface as a deck. 

In studies of wave impact on a wall Bagnold (1939) was the first to note 
that although pressure measurements show great variability between nominally 
identical wave impacts the integral of pressure over the duration of the impact, 
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the pressure-impulse, is a more consistent measure of wave impact. This has been 
exploited theoretically by Cooker and Peregrine (1990 a,b, 1992, 1995) who show 
that the pressure-impulse and its distribution is not sensitive to the shape of the 
impacting water except in a region very close to the structure. Chan (1994) and 
Losada, Martin, and Medina (1995) show good agreement with experiment for 
wave impact on a wall. 

Mathematical model 

The geometrical simplifications we make may be seen in figure 1. The water 
is taken to be of finite depth CD= a, and to impact the horizontal deck BC of 
length L with an upward velocity V. The free surface outside the deck is taken to 
be flat, as BA, and to stretch to infinity. However, as indicated below alternative 
surface shapes are easily found by choosing different contours of pressure-impulse. 
The boundary conditions on CD given in figure 1 indicate that the problem can 
be reflected in the vertical plane of CD, corresponding to impact on a horizontal 
surface of length 1L with a central plane of symmetry. 

dP/dy = 1 
B 

p = o A 

dP/dx = 0 

y 

D 

L 

a V2P = 0 

I 

dP/dy = 0 

Figure 1: The problem to be solved. 

Let the pressure be p(x,y,t), then the pressure-impulse is 

P{x,y) = /    p{x,y,t)dt (1) 

where ta and i\, are the times after and before impact respectively, such that the 
time interval (<{,,<„) is short compared with all other time scales in the problem. 
The main approximation is that during this short time the fluid motion changes 
so rapidly that the equation of motion may be approximated by 

dxx        1 
= —Vp 

at        p 
(2) 

where u(x,y,t) is the velocity field, and p the density which is assumed to be 
constant and uniform. The neglect of the convective terms (u.V)u is consistent 
except in any small region near the impact where jets may form. 

Integration of (2), with respect to time, yields 
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U0-U6 = --VP (3) 
P 

Incompressibility gives V.ua = V.U& = 0. Therefore we find 

V2P = 0 (4) 

in the region of the water. 
The boundary condition at the free surface is that the pressure must be 

constant and continuous therefore P = 0. At the walls and on the bed, the 
normal velocity must be zero before and after impact, therefore using equation 
(3), dP/dn = 0, where n is the normal direction. As the water meets the deck 
BC, the water has vertical velocity V, which could be any function of a;, and after 
impact the water has zero vertical velocity. Therefore, again using equation (3), 
we have dP/dn = V. For simplicity, we choose V to be constant. We make the 
problem dimensionless by choosing units for which V = 1 and L — 1. 

Infinite depth solution 

The problem of a wave hitting upwards under a deck jutting out from a wall, 
is mathematically equivalent to a plate dropping onto a body of water and setting 
the water in motion. Also when considering solving Laplace's equation we can 
use the direct analogy with the velocity potential of irrotational flow. If we 
consider the complex potential for a flow past a plate then we just need a change 
of reference frame to find the complex potential of a moving plate in a stationary 
fluid. With a complex potential w = <j> + ii/>, then d<j>/dx = 0 on x = 0, and 
d<f>/dy = 1 along the plate. These are the conditions that are required by P, and 
so the lines of constant pressure-impulse are given by lines of constant <j>. The 
solution may be found in Lamb (1932, section 71), and in Milne-Thompson(1962, 
section 6.3), for a fluid flowing past an ellipse, if we allow one of the semi-axes 
to shrink to zero then we have a plate instead of an ellipse in the flow. Finally 
choosing the plate to be perpendicular to the flow, the length of the plate to be 
2, and the velocity 1, we get an expression for the complex potential of a stream 
flowing past a plate: 

w = -Vl - z2 (5) 

where the origin is taken to be the centre of the plate. 
If we subtract the complex potential for a stream from this expression we 

have the potential for a moving plate. As the velocity of the stream is (0, —1,0), 
we must therefore subtract \z to get: 

w = —\z — \/l — z2 (6) 

This solution is symmetric about the centre of the plate. This means that we 
can consider a line drawn perpendicular to the plate from the centre of the plate, 
to be a wall, bringing us back to the original problem of the water hitting a deck 
jutting out from a wall. Hence we have an expression for the pressure-impulse: 

P = Re(-k - Vl - z2) (7) 
This is the infinite depth solution. Figure 2 shows contours of pressure-impulse. 
The total impulse on the deck is TT/4, in dimensional terms TrpVL/4. 



2576 COASTAL ENGINEERING 1996 

Figure 2: Infinite depth solution. Total impulse on deck (0,1) is 7r/4. 

Infinitely long deck. 

As a becomes small the effect of the free surface on the solution under the 
plate becomes small. This means it is possible to solve in that region by ne- 
glecting the condition at the free surface. Hence we solve Laplace's equation 
on a strip where dP/dy = 1 along the top, dP/dn = 0, where n is the normal 
direction, along the left-hand edge and bottom. 

The solution is given by: 

2a y x2] + K (8) 

where K is a constant which depends on the behaviour of P near x = 0, where 
this approximation fails. Figure 3 shows the case when a = 0.1, and K is set to 

Figure 3: Analytic solution when a is small.(a = 0.1,if = 0) 

In practice the 'filling flow' solution of Peregrine and Kalliadasis (1995) may 
be more relevant to this case. 
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More general solution 

Consideration of the boundary conditions in Figure 1, or the solution (7) shows 
that at B there is a square root singularity. This singularity causes problems for 
many numerical solution methods. However, one way to eliminate the problem 
of the singularity is to map the original problem using conformal maps as follows. 
First map to a half-space, then use another conformal map to perform a shift 
and stretch so that by using a final conformal map we can bend the problem 
back to a semi-infinite strip but with the boundary conditions shifted round to a 
convenient position, i.e. shift the boundary conditions on the deck round to the 
vertical wall. 

Let the original plane in which the problem is posed be the z plane. The first 
map we need is w = u + w = cosh(7rz/a). This gives the problem shown in figure 
4. As we only use conformal maps P continues to satisfy Laplace's equation 
throughout. 

• cosh(xa) 

V2P = 0 

-1 
±JL 

P = 0 8P 
n sinh(-7r:c/a) 

dP 

Figure 4: The problem in the u>-plane after the first complex map. 

B 
P = 0 

A 

dP/di = F(rj) 

11 

P-+Q 

D 

dP/dTj = 0 

E 

Figure 5. The final problem to be solved in the £-plane, where 
F(r)) = - sm{Trr]/a)/(MVW^l) with 6 = [COS^T?) - N] /M. 
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We then use a translation and magnification to shift B to — 1, and C to 1. 
The map required is h — f + \g — Mw + N where M = 2/(cosh(x/o) — 1) and 
N — M + 1. The last step is to map this problem back to the strip. The final 
map required is ( = £ + ir] = a cosh-1 (h)/V. This gives the problem as shown in 
figure 5, in a form with the singularty eliminated by being placed at a corner. 

We solve Laplace's equation in this region by separation of variables. Let 
P = f(v)g(Oi giving /" = —a2/ and g" = a2g, where a is a constant. Solving 
for /, using the boundary condition that / = 0 at i; = a, and df/dr) = 0 at 
T) = 0, gives / = Acos(anrj) where an — (n + l/2)n/a. We now solve for g, using 
the condition that P —> 0 as £ —> oo. This gives g — Re~a"t. Hence we have an 
expression for the pressure-impulse: 

P = J2Ane-a^cos{anri) (9) 

Finally we use the condition that dP/d£ = — s'm(Trr)/a)/(M\/b2 — 1), where 
b — [cos(x7j) — N] /M along £ = 0 to get expressions for the An. Using this 
condition we get: 

x—» . / sin(x?7/a) ,    . 
- JJ Anan cos(an??) = --^-j=L (10) 

The final step is to multiply both sides by cos(Qm?y), and integrate along the line 
£ - 0 to get: 

A^^r^-^iipp^d, (ii) 
ama Jo  M y>b2 - 1 

Similar results can be found for any velocity distribution V = V(x). 

Results and discussion 

The integral in (11) is evaluated by using a numerical routine. For the cases 
of a = 0.5 and a = 2.0 taking thirty terms in the sum, gives an accuracy of 4 
and 12 decimal places respectively. The distribution of pressure-impulse in the 
water beneath the deck is shown for deck width to depth ratios of 0.5, 1.0 and 
2.0 in figures 6,7 and 8 respectively. The values of the total impulse on the deck 
and on the wall beneath each deck are given in each caption. 

In figures 6,7 and 8 note the differing contour intervals, and the increasing 
impulse on the deck as the water depth a is decreased. The value of total im- 
pulse on the deck is given as a function of a in figure 9. This trend is for the 
impulse from impact of a given velocity and area to increase as the body of im- 
pacting water becomes more confined. The same trend is described by Cooker 
and Peregrine (1995) for impact on an interior wall of a rectangular box and by 
Topliss (1994) for impact within a circular cylinder. Consideration of flow in 
the most confined circumstances, as a becomes small, has given the concept of 
'filling flows' (Peregrine and Kalliadasis, 1995). Further, an estimate of how the 
compressibility of dispersed air bubbles, such as those entrained in waves during 
breaking, may soften wave impact is given in Peregrine and Thais (1996). 

The results are in dimensionless units, for practical use the dimensional 
pressure-impulse is needed; that is 

P*{x*,y*) = PVLP(Lx,Ly), (12) 
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Figure 6: Pressure-impulse contours with a = 2.0. Total pressure-impulse on the 
deck and wall respectively are 0.81 and 1.02 

).0 0.5 1.0 1.5 2.0 2.5 

Figure 7: Pressure-impulse contours with a = 1.0. Total pressure-impulse on the 
deck and wall respectively are 0.92 and 0.74. 

Figure 8: Pressure-impulse contours with a = 0.5. Total pressure-impulse on the 
deck and wall respectively are 1.193 and 0.44. 
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where * denotes the dimensional quantities. Whilst p and L will generally be 
known, V the vertical velocity of impact will need to be estimated. A simple 
method of estimating V is to first estimate how high a wave would be in the 
absence of the deck. Suppose it would have a height AH above the deck level. 
In simple projection of a particle this would require a velocity of \flgAH. This 
is a reasonable, somewhat conservative, estimate for V. 

Total pressure impulse 

Depth of box. 

Figure 9: Total impulse on deck against depth a. 

Note, the above solutions are not appropriate for impact from jets, e.g. see 
Cooker and Peregrine (1995), where the semi-infinite rectangular impact on a wall 
is equivalent to half of a plane jet and section 3.5 gives the solution for a circular 
jet. However, the solutions can be used for waves which are not nearly level 
with the deck as the figures indicate. By subtracting the appropriate constant 
from P, any of the contours of P can be chosen as an alternative free surface. 
Although such a surface tends downward rather than towards a horizontal level, 
this is not of great significance as long as the shape within roughly unit distance 
is appropriate. See Cooker and Peregrine (1995) for some examples. 

Clearly the results presented here can be used to estimate the impulse and the 
spatial distribution of a wave impact. In addition, as illustrated by Cooker and 
Peregrine (1992) it is possible to estimate the impulse on smaller bodies on and 
near the wave impact area. The impulse may be derived from the local pressure- 
impulse gradient. Figure 10 shows the local gradient along the surface of the 
deck, and figures 11 and 12 show the gradient down the wall and along the bed 
respectively for a selection of values of a. On the wall and the bed the pressure 
gradient is tangential since dP/dn = 0. However, on the deck where the impact 
occurs dP/dn ^ 0 so that there is also a component of impulse perpendicular to 
the deck and downward. 

Consideration of the gradient of pressure-impulse gradient near the edge of 
the deck shows alarmingly high values because the mathematical solution has a 
singularity at the edge of the deck.   Clearly a better approximation is needed 
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P differentiated w.r.t. x along the plate. 

Figure 10: §^ along the deck. 

P differentiated w.r.t. y along the L.H. edge. 
1.0 

- 
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Figure 11: #- along the left hand wall. 
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P diff erentiated w.r.t. x along the bottom. 

---'_  • 

0.2 a = 2.0 - 

0.4 '- • -••'': 

0.6 -_ 

0.8 
:_ 

1.0 -_ 

1.2 ~7 \__^/   a = 0.5 ~ 

1 4 i     .     .     .     .     i     .     .     . • 

Figure 12: |^ along the bottom. 

there. One simple way of obtaining more realistic values is to consider how the 
solution is obtained for the infinite-depth case, a = oo. There, the solution for 
the flow past a plate is used. This solution is a limit of flow past an ellipse. 
Thus a somewhat better solution could be obtained from the flow past a slender 
ellipse. In any case, it seems reasonable to conclude that attachments beneath a 
deck are vulnerable to especially large impact forces if they are near the edge of 
the deck, or the edge of the impact zone. 

Three-dimensional effects 

All the above work assumes uniformity perpendicular to the (a:, y) plane, or some 
rigid boundaries parallel to that plane. In practice this is unlikely, and three- 
dimensional effects may be important. That is the impact area on the deck, 
rather than being a long strip of finite width L, should be taken as a finite area 
of an appropriate shape. This aspect of the problem is under study. For the 
present, we just note that for infinite depth solutions, a solution for impact on 
an elliptic area can readily be found from the potential flow round an ellipsoid. 

Conclusions 

A readily evaluated solution is presented for the pressure-impulse from waves 
hitting a deck from below. It is found that the impulse is greater if the water is 
shallow. 

The same results may be useful for estimating the effects of upward impact 
by liquid confined within a container. 
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