
CHAPTER 203 

WAVE ENERGY DISSIPATION IN KELP VEGETATION 

Alfonse Dubi1 and Alf T0rum2 

ABSTRACT 
A laboratory experiment was carried out to investigate wave energy dissipation in 

a coastal kelp field of Laminaria hyperborea with a purpose of finding the damping 
rate. Parameters measured were wave heights at 8 locations along the direction of 
wave propagation, forces on artificial kelp plants, and velocities in between the plants 
in 4 different water depths. It was found that in 4, 6, 8 and 10 meter water depths, the 
damping coefficient was 0.0094, 0.0032, 0.0014 and 0.0005m"1 respectively. Results 
show that the damping rate varies with population density, size of plant, water 'depth 
and wave period. 

1. INTRODUCTION 
Through a variety of processes, waves lose energy. Among the commonly known 

processes are wave breaking, bottom friction, reflection and interaction with porous 
beds and soft muds. Waves propagating through vegetation also lose energy due the 
work done on the vegetation. 

Following Ippen (1966), the wave amplitude attenuation can be evaluated through 
the steady-state conservation of wave energy flux equation: 

V\ECg) = -ED   (1.1) 

where E = 'Apgd* is the wave energy density, p is the density of water,   Cg is the 
group velocity and ED is the energy dissipation rate.  The local wave amplitude a is 
found to decay exponentially (see for example, Asano et al., 1992) as 

a{x) = a0e-k'x   (1.2) 

where k,  is the damping rate (also known as the damping coefficient) of the wave 
height with distance and a = a0 at x = 0. 

In a study on the interaction between ocean waves and a kelp farm, Dalrymple et 
al. (1982) arrived at a wave height attenuation formula of the form: 
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a(x) _ { 

1 + a^x 
.(1.3) 

where 

ad =^(^Y^l[sinh3yW + 3sinhM] 4k 
3 sinh A£>(sinh 2kD + 2kD) 

.(1.4) 

in which only the real part of the wave number k is used. CD is the drag coefficient 
assumed constant over depth, d is the height of plant above the bottom, dk is the 
plant diameter, and b is the spacing between plants. This approximation, however, 
takes plants as rigid cylinders; an assumption which results in assigning different 
values to the drag coefficient to cover the ignorance of the plant motion. Dalrymple et 
al. (1982) applied Eq.(1.4) for waves propagating through Macrocystis pyrifera kelp 
forest using known values of Co = 1.0, dk = 0.3 meters, b = 1.5 meters and D = 15 
meters. They found that incident wave heights of 6.1 meters with 10-20 seconds 
periods could be reduced by 50% over a distance of 800 meters. This is equivalent 
to aa = 0.0013/w"1 and applying the exponential law of attenuation, k, = 0.0009 m'x . 

Recently, Kobayashi et al. (1991) developed an analytical model, hereafter known 
as the Kobayashi model, to describe a 2D problem of small amplitude waves 
propagating over submerged or subaerial vegetation. They assumed the effect of the 
vegetation to be expressible in terms of the drag resistance against the fluid motion. 
The vertical component of the drag resistance and the proximity effects of the 
surrounding strips on CD were neglected. Although an analytical solution was 
obtained, the calibrated drag coefficient Co varied widely due to the fact that the 
swaying motion of an individual vegetation stand had been neglected. 

Later, Asano et al. (1992) improved the Kobayashi model by including the 
interaction between the wave and the vegetation motion. Whereas   the Kobayashi 
gave the calibrated values of CD   to the order of 0.1, the model of Asano et al. 
produced   CD of the order unity and   the vertical force was neglected while the 
horizontal drag force was assumed to be dominant and linearized as 
Fx = pDku2  (1.5) 
where Dt is a linear force coefficient determined by the least squares method, u2 is the 
horizontal particle velocity in the vegetation zone. Solution of the linear model gives 
the dispersion equation as 

,       , k\a.nhkh + at tanhatrf ,    „ 
or =gk * k—   (1.6) 

k + ak tanhatG?tanh£/z 

in which co is the angular frequency, d is the vegetation height, h is the water depth 
above vegetation and 

*=_m*l_  
*      w+iDk 

K    ' 

In the case of weak damping, a»Dk, separation of the real and imaginary parts 
of the dispersion equation yields the following 
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co2 = gkrtmhkr(h + d)  (1.8) 
which implies that the presence of vegetation does not change the real wave number 
kr as long as st «1.   The damping rate is then approximated by 

-     ir           2krd + sinh2krd 
i~Ek r2kr(h+d) + smh2kr(h + d)       ' ' 

where e, =^-  (1.10) 
2© 

On the other hand, applying the energy conservation equation, Eq.(l.l), and 
invoking Eq.(1.2), the Kobayashi model gives the damping rate as 

^Dkf2krd+sinh2kA 
'    Cg {2sinh2kr(h+d)) V '   ' 

A more recent  theoretical model based on limited experimental data is that of 
Wang and T0rum (1994) in which the dispersion equation is given by 

lanh kh —— tanh kshs 

C02= : ^     (1.12) 
1 —— tanh k,h, tan kh 

a/* 
s   s 

where a = I—   is the force ratio  (113) 

and ks= ak, fx and f2 are linearized horizontal and vertical force coefficients 
respectively, hs = height of plant. The complex wave number is solved by iteration 
for known parameters and an assumed value of a - 0.8. 

Results from this model show that the damping coefficient increases with 
increasing wave period until it reaches an asymptotic values of just below 0.0015m'1, 
0.0020m'1 and 0.0025 m\ for   densities of 8, 12 and 16plants/m2'. 

In this paper three different ways of finding the damping rate are used and 
compared. The first way is to get an analytical expression of the energy dissipation 
rate ED using the linearized dissipative force and then apply Eq. (1.1). The second 
way, is to get a numerical value of the dissipation rate from time series of the 
horizontal velocities measured in between the plants and the corresponding horizontal 
force on the plants and apply Eq.(l.l) again. The third way, is to solve the complex 
dispersion equation for the complex wave number k by iteration as propsed by Wang 
and T0rum, (1994). 

2. THE DAMPING RATE 

2.1 Energy dissipation and the damping rate 
Energy dissipation considered to be real and positive takes place mainly in the 

vegetation zone and partly in the boundary layer at the interface and near the solid 
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bottom. For a given volume of the vegetation zone, energy dissipation during a time 
period Tis given by (e.g Madsen, 1974) 

ED=j$b•dl'  (21) 

where F = F (x,y,z,t) = (Fx,0,Fz) is the dissipative force vector in the vegetation 

zone and U = (u2,0,w2) is the complex velocity vector for the 2D case.  Defining the 
force and velocity vectors as (i, j, k) in the (x, y, z) directions as 

F = Fx i + Fz k 

U = u'\ + w k 
.(2.2) 

and substituting into Eq.(2.1) we get 

1    rt+T r-(h+h) 

jh 

=irdtr
+h)Fx.u2(i+a\^-))dz •^1 

..(2.3) 

The second term under the integral in Eq.(2.3) is found to be at least of the order a2 

and if we assume that W2/M2 = 0(a2) « 1, which is generally true in coastal waters 
(Mei, 1982), the time averaged energy dissipation then becomes 

.(2.4) 
1     ft+T !—(*+'») A 

ED=-\    dt\ Fx.u2dz +0(a4) D     jit       J-(h+d)   *   2 ' 

The dissipative force is linearized and expressed as 

Fx = pfdxu2 (2.5) 

where/A is a linear drag force coefficient (Dubi, 1995) given as 

/« p(2^ + sinh(2^fi?)) 
.(2.6) 

where nt is the number of plants per unit horizontal area, ar is a force reduction factor 
accounting for group shielding and is found experimentally as a fitting coefficient 
equal to 0.08. F% is an empirical force coefficient evaluated at the canopy level, i.e. at 
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z = -(h + 4) and h/= (d-k) where k is half length of the kelp frond. Am is the velocity 
amplification factor obtained from the solution for the vegetation motion. The 
complex horizontal velocity in the vegetation zone is given in Dubi and T0rum (1994) 
as 

iCk cosh(ks(h + d+z)) exp[i(kx-&t)]   2.7) 

where 

C = ga 

cosh(ksd) cosh(kh) 1—— t&nhOcd) tanh(kh) 

.(2.8) 

Substituting Eq.(2.7) into Eq.(2.4) we get the linearized form of energy dissipation, 
after time averaging, as 

E   _ P/* r<•*>.   U__ Pf*\C\ \k\   smh(2kshf) + 2kshf 
D       2   J-(^)' 2| 2co2|/J2 4k. 

(2.9) 

in which only the real part is considered. Substituting Eq.(2.9) into Eq.(l.l) for the 
2D case we have 

£(«:.>-£(*:.£--*•. 
in which Cg is assumed to be constant due to constant water depth and 

pg2H7,*     (smh(2kshf+2kshf 

.(2.10) 

B = - (2.11) 
2a2F2\afa-iG\z{ 4* 

where F = cosh k4 cosh kh and G = tanh kjd tanh kh. The solution of Eq.(2.10) is 

— = e l .(2.12) 

where B' = B/VipgCg. Equating Eq.(2.12) and Eq.(1.2) we find the damping rate to 
be 

MU* (sinh(2kshf+2kshf^ 

4k. '    2a>2F*\afx-iG\2Cg 

.(2.13) 
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in which we shall adopt \k\ = kr derived from the solution of the dispersion equation. 

2.2 Solution of the complex dispersion equation and the damping rate. 
The dispersion equation contains complex unknown variables k and fx. The 

angular frequency co is real and assumed to be known. The solution for the complex 
dispersion equation is found by iteration when Eq.(1.12) is rewritten as: 

F(k,fx) = &2{\—'—tanh(ksd)tanh(kh))-gk(tanh(kh)—l—tenh(ksd)) = 0 (2.14) 
a/x a/; 

The iteration scheme is carried out as follows: 
(i) As a starting approximation we apply Eq.(2.14) for very small damping force 

coefficient, that is, for fx —> -/', leading to an approximate solution for the wave 
number k0 for given a ,a>, h and d. Then &/0) = real(£0) 

(ii) With an initial guess &/o) for the imaginary part of k, we solve Eq.(2.14) with 
kf0>=k/o)+ik2(o) as initial value input. The solution gives kr = Re(k) and kt = Im{k). 
The convergence criterion for the case is 

*("> _*<«-!> 

*<"> 
<e(k) (2.15) 

with e(k) being an arbitrary small number which in our case is set equal to 10"3. 
Results of the damping coefficient computed from the dispersion equation shall be 
compared with those obtained from the energy dissipation equation. 

2.3 The damping rate from measured force and horizontal particle velocity 
The damping rate can also be evaluated by making use of the measured force and 

horizontal velocity time series. Integrating the product of these two quantities and 
time averaging gives the energy dissipated per unit time as 

E   -   ] 
D-       \\um cos2 co;  dt=±£&-  (2.16) D AT)0    mm 2        A \ ) 

where Fm is the total measured force amplitude and Um is the measured horizontal 
velocity amplitude. To get energy dissipation per unit horizontal surface area we have 
divided by A = 8 m2, which is the horizontal surface area of the shear plate used in the 
experiment. Inserting Eq.(2.16) into Eq. (1.1)   we find that 

k^l-ML^ (Z17) 

in which p, g, Cg and maintain the same definition as in previous formulae, converted 
to full scale. For irregular waves we shall take significant force and significant 
velocity. 
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3. LABORATORY EXPERIMENT 
The experiment was carried out in a 33 m long, 1 m wide and 1.6 m high wave tank 

as shown in Figure 1. The width of the channel was partitioned to give a width of 0.5m. 
Five thousand models (scale 1:10) of Laminaria hyperborea plants were fixed on the 
bottom over a span of 9.3 meters. This represented a density of about 0.12 plants per 
horizontal square centimeter in the laboratory or 12 plants/square meter in the field. The 
setup consisted of eight capacitance wave gauges to measure surface elevations, one shear 
plate which was fixed flush with the bottom, to measure the horizontal force and a mini- 
current meter which was inserted in between the plants 4 centimeters above the shear plate 
to measure horizontal particle velocities. One of the wave gauges was placed above the 
shear plate. The first wave gauge, taken to be located at x = 0 and the last taken to be 
located at x = 7m, were fixed about 1.2 meters inward from the inner and outer 
boundaries respectively. 

We started with 6m water depth and tested with regular waves with periods ranging 
from 4-14 seconds, full scale. With the same water depth, irregular waves with peak 
periods ranging from 4-14 seconds were tested. For each wave period, several wave 
heights were tested. 

ware absorber wave 
padde 

5 4 

tt 
's~\ 

If   1    1     I   {acm   ' 

model kelp plants 

-*N- •*h- -*+«- 
7m 9,3 m 16,7m 

legend 

1-8 wave gauges 

9 shear force sensor 

10 current meter 

Figure 1 Laboratory experiment layout 

4. RESULTS 
(1) The exponential decay model given by Eq.(1.2) was fitted to measured data by 

regreesion analysis based on the least squares method. Figure 1 shows an overview of 
the exponential decay of the wave heights with respect to distance from the origin. 
Figure 3 shows theoretical variation of the damping rate with wave period T obtained 
from Eq.(2.14) and Eq.(2.13) for total water depth D = 6m using the following kelp 
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plant properties: total kelp height d= 2m, frond half length h = 0.5m, density of kelp 
p= 1120 kg/m3, mass of frond and stipe = 0.75 kg/m, linearized spring constant k0 = 
20N/m, linearized (empirical) force coefficient FA = 30N/(m/s), added mass for both 
frond and stipe Ca=\, number of plants per horizontal square meter rik = 12plants/m2. 
For the given parameters the damping rate using Eq.(2.13) increases with the wave 
period for small values of T to a maximum and then decreases gently for larger values 
of T to an almost asymptotic value. On the other hand, the damping rate from the 
dispersion equation decreases rapidly for larger values of T. In the same figure, we 
also compare the damping rates derived from Eq.(l.ll) given by Asano et al. (1992) 
and the solution of the dispersion equation given by Wang and Terum (1994). 

(2) Figure 4 shows a comparison of theoretical values obtained from Eq.(2.13) 
with those obtained experimentally for irregular waves in a water depth of 4m. 
Theoretical models by Asano et al. (1992) and Wang and T0rum (1994) are also 
compared to the measured data points. 

(3) Figures 5 through 8 show a comparison of theoretical values of the energy 
dissipation equation with measured values from regular and irregular waves in water 
depths of 6, 8 and 10 meters. From these figures we observe several things: 

First, the experimental damping coefficient varies more widely for shorter peak 
periods and almost converges (narrower scatter) for longer peak periods. 

Second, for longer peak periods the theoretical damping coefficient is almost 
independent of the peak period despite a gradual decrease. 

Third, when we compare the damping rates in 4 and 6 meters water depths, we 
find larger values for the shallower water. We may conclude that the shallower the 
water, the higher the damping coefficient. This observation is also in agreement with 
field results by Mork (1995). 

Fourth, The theoretical model by Asano et al. (1992) is good only for the 
prediction of the damping rate for small damping. For large damping, the model 
grossly overestimates the damping rate. The model by Wang and T0rum (1994) 
underestimates the damping rate for small waves and overestimates it for large 
damping. For the whole range and especially for practical wave periods (6-14 
seconds), the present model is very good. 

Fifth, the damping rate obtained from the experiment for regular waves shows a 
very wide scatter. However, the theoretically predicted values appear to fit within the 
range of scatter as shown in Figure 6. 

Sixth, as the water depth increases, the energy dissipation equation (Eq.(2.13.)) 
tends to over-estimate the damping coefficient, while the dispersion equation 
(Eq.(2.14)) comes closer and closer to the measured values. The reason for this 
discrepancy is not clear. However, since the empirical force coefficient FA was 
evaluated at 6m water depth, in the absence of force data for other water depths, it 
may be that this coefficient is variable with water depth. 

(4) Figures 9 and 10 show the general functional relationship between the 
damping coefficient and total water depth and the number of plants per square meter 
respectively. For all wave periods kt - 0.0658exp(-0.5*£>). 
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Figure 2 Comparison of exponential decay for different total water depths. 
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Figure 3 Comparison of theoretical models of Asano et al. (1992), Wang and 
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CONCLUSION 

(1) As waves propagate in kelp fields, their wave heights are reduced significantly 
and wave lengths are shortened. Both theoretical and experimental studies indicate 
that the damping coefficient is governed by the wave period. It increases with wave 
period for shorter periods, reaches a maximum and then decreases gradually with the 
wave period for longer periods (Figures 5 through 8) 

(2)The damping coefficient is also governed by the water depth and population 
density of plants. Figures 9 shows that the damping coefficient decreases with 
increasing water depth. Figure 10 shows that it increases with increasing population 
density until it reaches a maximum, after which it decreases sharply with increasing 
density. 

(3) Basing on the theoretical and experimental results, wave height attenuation is 
more substantial in shallow water than in deep water. In fact it is almost negligible in 
water depths greater than 10 meters. For a population density of 12 plants/m2 , 
significant heights of irregular waves will be reduced by say 50% over a distance of 
74, 216, 495 and 1390 meters in 4, 6, 8 and 10 meters mean water depth 
respectively. 
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(4) The linear assumption of the wave force in relation to the particle velocities 
leads to an exponential decay (damping) coefficient of the wave height with respect to 
distance. 
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