
CHAPTER 314 

EULERIAN MEAN VELOCITIES UNDER 
NON-BREAKING WAVES ON 

HORIZONTAL BOTTOMS 

Peter Nielsen1 & Zai-Jin You2 

Abstract 
A model is presented for the Eulerian time-mean velocities in combined wave-current 
flows. The typical, measured profiles of weak currents are well modelled. This 
includes the "toe" of forward drift in the wave boundary layer and the very flat (as 
opposed to the parabolic shape of laminar models) current profile between the bottom 
boundary layer and the wave trough. The model relies on a local force balance like 
Longuet-Higgirts' (1953) diffusion solution rather than on advective influence from 
the end conditions. This seems justified by experiments, probably because a sufficient 
amount of turbulent diffusivity is present even for very weak currents. In its present 
form the model can only handle currents which are so weak that their influence on the 
wave motion is negligible. However, agreement with measurements of stronger 
currents can be obtained by modification of the wave Reynolds stress to account the 
influence of the current on the wave motion. Application to surf zone conditions also 
require modifications, but the essential structure of the model is globally applicable. 

Introduction 
Several authors eg. van Doom & Godefroy (1978), van Doom (1981), Kemp & 
Simons (1982), Kaaij & Nieuwjaar (1987), Kampen & Nap (1988), Heiboer (1988), 
Villaret & Perrier (1992) and Klopman (1994) have found that Eulerian mean 
velocities under progressive, non breaking waves show different distributions from 
what has been expected. Following currents reach a maximum value and 
subsequently decrease towards the surface. See Figure 1. The trend is found for all 
current strengths as long as the time averaged bed shear stress is in the direction of 

wave propagation [du I dz > 0 for z —> 0+ ) but is not found for currents in the 
opposite direction. Opposing currents show the oppostive anomaly. That is, compared 
with a logarithmic profile, the opposing current grows more rapidly towards the 
surface. 
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Thus, observations of both following and opposing currents contrast with the 
existing simple wave current boundary layer models, e g, Grant and Madsen (1979), 
Fredsoe (1984), Coffey & Nielsen (1986) or You (1994) which all predict logarithmic, 
i e, monotonically increasing current velocities above the wave boundary layer. 

It is obvious from Figure 1 that the depth averaged current velocity < u > may 
be significantly overpredicted by the old type of models for following currents. The 
elevation at which the current maximum occurs depends on the relative strength of the 
current. For very weak currents, eg. flume experiments with zero net flow, it occurs 
very close to the bed, i e, below or near the top of the wave boundary layer. For 
stronger currents, it occurs closer to the mean water surface. This trend was clearly 
shown by the measurements of Kemp and Simons (1982). The data in Figure 1 were 
obtained over a fixed bed but numerous profiles over sand beds, measured by 
Heijboer (1988) and Villaret & Perrier (1992) show the same trends. 
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Figure 1: Eulerian mean velocities measured under non breaking waves, van Doom (1981) 
test VOO, V10, V20. In all tests the wave parametres were (D,T,H,)=(0.3m, 2.0s, 0.12m), and 

the bed roughness was artificial ripples with Nikuradse roughness r = 2.1cm. 

The current maximum is not seen in velocity profiles from U-tube experiments 
like those of van Doom (1983). It was therefore suggested by Nielsen (1992) that the 
profile type in Figure 1 can be understood in terms of the wave Reynolds stress 
— puw which exist under a progressive wave with a bottom boundary layer but not in 
the U-tubes. The tilde indicates periodic components with zero mean, corresponding 
to the definition u(t) = u + u{t) + u'{t). 

Figure 2 shows corresponding examples of following and opposing currents 
superimposed on the same waves (same period and same wave height) measured by 
Klopman (1994). Klopman's data show very clearly the difference in profile shape 
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caused by the wave Reynolds stress - pw w. Wave basin measurements by Havinga 

(1992) with angles of 60°, 90° and 120° between current and wave propagation show 
intermediate stages of this phenomenon. 

The following outlines a model of current profiles in the presence of waves 

which takes -puw into account explicitly in order to explain the shape of the 

velocity profiles in Figures 1 and 2. The model can successfully predict the 
distributions of weak currents as in a flume with no recirculation. For strong currents 

adjustments are needed to the distribution of - puw which are as yet not understood. 

They are most likely due to non linear wave current interaction. 
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Figure    2: Current 
profiles in the presence 
of no waves (+), 
following waves (o) and 
opposing waves 
(triangle) of the same 
size. Depth D = 0.5m, 
wave period T= 1.4s and 
wave height H = 0.12m. 
After Klopman (1994). 
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Shear Stresses and Shear 
In the following the notation of Nielsen (1992) will be followed. Thus, the symbol ? 
represents the total shearing force per unit area of a cross section or the total transfer 
of x-momentum in the z direction. Hence, in a two dimensional flow with steady, 

periodic and random velocity components (u,w)=(u +u +u',w + w+ w') in the x 

and z directions we have 
du      — du —       

;pv 
dz 

-puw = pv——-pu w • 
dz 

•puw — pu w (1) 

where, as usual, v is the kinematic viscosity and p is the fluid density. The total 
normal stress (positive as tension) or horizontal transfer of x-momentum is 
corresponding given by 

du        _      _,     —      —— du 
G=-p-pu +pV— = -p-pu- 

ax 
-pu  —pu + pvYx (2) 
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and these two satisfy 
dx    da 

dz     dx 
in a steady, two dimensional flow, i e, 

d_ 

dz 

du 
>  

dz 
•uw —uw-u w 

d_ 

dx 
— + u2 +u2 +u'2 -v 

du_ 
dx 

(3) 

(4) 

Here we assume, for the situation of waves and a weak current, that the second 
term on the left can be neglected and that the first and the third term are dominant on 
the right hand side so that we have 

d_ 

dz 

du    — 
V—— -uw- 

dz 
u w 

d_ 
dx p 

(5) 

£+¥ 

which is integrated with the bottom boundary condition T(0) 

du    —   -r-t    x„    \ d 
v—— uw-uw =—+ I — 

dz p    ;« 

Here we may write the first and third terms on the left in terms of a current 
eddy viscosity vc and solve for the current gradient 

= xo to give 

dz (6) 

du 

37 
1 Mf p     J dx \ r        o .p 

dz + uw (7) 
J 

This equation will then directly give the current distribution by integrating 
with the boundary condition «(0) = 0. 

If the main emphasis is on the flow near the bed, it is justified to assume that 
the mean pressure is hydrostatic. However, in order to get a good representation of the 

flow closer to the surface it is necessary to use p = pg(r\-z)-pw2 in which case 

Equation (7) can be written. 

du 
3z p        dx 

dz + uw 
J 

1 

PVC 
^-J 

do_ 
dx 

dz+ uw (8) 

This general expression explains qualitatively the shape of the current profiles 
in Figure 1. For all three cases, x„ is positive and hence the current gradient is 
positive at the bed where the other terms are zero. Those terms will however grow in 
magnitude with increasing z and they are all initially negative for non-breaking waves 
over a horizontal bed. Thus, the right hand side and hence the current gradient will 
change sign at a certain level and the current velocity shows a maximum, see Figure 3. 

The mean bed shear stress 
The bed shear stress X0 = x(0) can be determined from 

M    dS. 
X   = T .pgD~- 

dx (9) 

where Tw is the time averaged wind stress, D is the local mean depth, X] is the mean 

surface elevation and 5„ is the wave radiation stress in the direction of wave 
propagation calculated from a suitable wave theory. 
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The radiation stress term 
Assuming linear wave theory, the radiation stress term of Equation (8) is evaluated as 

\iw-^-\ iiL 
2dx 

nH    ) 

Tsinh kd 
[cosh2 fe-sinh2 kz] dz 

= H 
dH 
dx T2 sinh2 kd 

(10) 

In general the wave height may also vary due to breaking, refraction, 
diffraction and shoaling, but if only bottom friction is important, the wave height 
gradient is given by 

.dH        8     fe(Aaf 
H- (11) 

dx       3ng cgr+ < u > 

where fe is the energy dissipation factor (=/«,), cgit is the wave group velocity relative 
to the current and < u > is the depth averaged current velocity. See e g Nielsen (1992) 
p 77. By inserting into (10) we obtain 

J W-*) dz = - 
•871 fM°>Y (12) 

3gT2 sinh2 kd cgr+<u > 

Hence, the radiation stress contribution to the current shear in Equation (8) has 
the same form as the surface slope term, i e, both grow linearly in magnitude with 
distance from the bed. Consequently, the general picture which determines the level of 

du 
the current maximum (— = 0) is as shown in Figure 3. The current maximum occurs 

az 

where the terms due to — and x,, are balanced by the wave Reynolds stress. 
dx 

MWS 

dz 
 P'uw'6 ° 

Figure 3: The current shear and the terms that generate it, cf Equation (8), for a typical 
situation of following current ( x„ > 0 ). The (lowest) current maximum will occur close to 
the bed for small T„ and closer to the MWS for larger z0, cf the measurements in Figure 1. 
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The wave Reynolds stress 

The wave Reynolds stress - pff vv may be seen as consisting of three components as 
shown by Bijker et al (1974). One due to the phase shifting of velocities in the 
boundary layer, one due to wave height decay and one due to bed slope. 

Longuet-Higgins (1956) derived an expression for the first one for boundary 
layers with constant eddy viscosity. It varies through the wave boundary layer as 

-pMvv = p-(Aco)2/t8[l-c-,;(2cos;-e-?+2^sinC)] (13) 

where 

^rv^ (14) 
Its asymptotic value above the boundary layer (z » 8) is 

-p(uw\=-phs (Aco)2 (15) 

which can be written in terms of the friction factor as 

-p(^)5=p^=fcA3co2/„ (16) 

cf Nielsen (1992). The wave friction factor may be determined from 
\0.2 

fw = eXP 

as suggested by Nielsen (1992). 

5.51-^1    -6.3 forr/A<l (17) 

Estimation of - puw in and above a turbulent boundary layer 

The expression (13) was derived for wave boundary layers that are laminar or which 
are turbulent with constant eddy viscosity. For turbulent wave boundary layers with 
moderate relative roughness: r/A < 0.06 it is however necessary to adopt a different 
description, cf Nielsen 1992, p 47. At present we shall adopt the simple, boundary 
layer model of Nielsen (1985) by which the horizontal velocity under a decaying sine 
wave can be written as 

w(z,0= Aco coshkz-e      yz' e.l—o, (lg) 

Provided the boundary layer is thin: lfe/1 « 1. The wave decay is described by the 
imaginary part of the wave number k = k,+iki. We note that the wave decay is not 
exactly exponential for a turbulent boundary layer, but we have approximately 

*,.l^..w_ *E! _,. (19) 
'     H dx 3gTj(cgr+<u>)sinh3kd   e 

cf Nielsen (1992), p 78. Ta is the period seen by a fixed observer. 
The boundary layer parameters zi    and p may, for hydraulically rough 

(roughness r) conditions, be found from the following formulae from Nielsen (1985) 
z1 = 0.09JrA (20) 
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p = 059exp 059 
l-(A/38r) 1.8 \ 

(21) 
l + (A/38r)' 

This model is likely to be satisfactory for all wave boundary layers in the 
relative roughness range which has so far been observed with beds of loose sand 
(0.015 < r/A < 1) as discussed by Nielsen (1992). For very rough beds, p->\, this 
model corresponds to constant eddy viscosity. 

In order to find the wave reynolds stress -puw we first find the vertical 
velocity that corresponds to (18) from the continuity principle: 

du z   -(l+.'X—)' 

W = \~dz = Acoe'^'^[isinhkz-ik\e       "   dz] 
dx 

(22) 

where sinh fa = sinh krz + i ktz cosh krz  for k\ z « 1 so that 
•(1+iX-)' 

w « Acoe'(*J'~fa:) [-/t,zcosh/trz + ismhkrz-ikje       z'   dz] (23) 

Similarly the expression (18) for the horizontal velocity can be simplified to 

u = Aco e'^-^ [coshkrz + ikiZsmhkrz -e   +' Z|   ] (24) 
Inside the boundary layer where kxz « ktz « 1 these expressions lead to an analogous 
(but very complicated) expression corresponding to (13). For the sake of brevity, we 
shall use (13) combined with (16) and with C, replaced by ^ = (z / z, )p, i e, 

(0fi)BL <= j=krA
3co2/„coshA:rz[l-e"4(2cos^-e"5+2^sin^)] (25) 

where the subscript BL refers to this term being analogous to the boundary layer term 
considered by Longuet-Higgins (1956). The cosh factor only makes a difference far 
above the boundary layer where i;» 1. 

If we neglect the boundary layer terms (the last terms) in (22) and (23) we get 
the contribution due to wave decay: 

(uw)DECAr = —(Aco)2&,z(cosh2krz + sinh2 krz) =—(Aco)2fc,.zcosh2fcrz (26) 

Figure 4 shows the two uw -contributions, evaluated for Klopman's (1994) tests. 

0.5- 

Figure 4: Wave 
Reynolds stress 
contributions for 
{h,T,H,r) = (0.5m, 
1.4s, 0.12m, 
0.0012m). The units 
are nvVs^lO'5. 
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The eddy viscosity distribution 
In order to find the u -distribution from Equation (8) we must specify the eddy 
viscosity vc(z) felt by the current. We use the distribution suggeted by Nielsen 
(1992) which consists of a parabolic/constant part based on the current friction 

velocity u,=^i0lp with a square toe added due to wave boundary layer mixing: 

vc(z) = Max 
2<az} 

0.4dl--W<D/2, O.lu.D for z>DI 2 (27) 

Discharge considerations 
Calculation of the total discharge presents a problem because it must include the 
discharge which occurs above the wave trough where the velocities are not obtained 
by integration of Equation (8) as they are for the lower part of the flow. One estimate 
of the net flow between the wave trough and the crest can be obtained from linear 
wave theory namely 

Q.c=^sH2 (28) 

where c is the wave speed, see eg. Dean & Dalrymple (1991). It is however not 
obvious how this irrotational result can be combined with an integral over the lower 
flow domain (z<D-H/2) of the velocities obtained from Equation (8). 

Identification QK [mVs] based 
on Eq (28) 

Measured 
D-HIZ 

)UdZ [m2/s] 
o 

Measured 
total Q [m2/s] 

Total Q  [m2/s] 
based    on    Eq 
(29) 

Klopman 1994 0.010 -0.012 0 -0.06 
"  -  ": monocrom, 
following 

0.010 0.057 0.080 0.080 

"  -   ": monocrom, 
opposing 

0.010 -0.071 -0.080 -0.091 

van     Doom     & 
Godefroy, smooth 

0.011 -0.0042 0 0.005 

van     Doom     & 
Godefroy, rough 

0.011 -0.0062 0 0.001 

van Doom V00 0.011 -0.0073 0 0.0004 
van Doom V10 0.011 0.020 0.030 0.041 
van Doom V20 0.011 0.051 0.060 0.087 

Table 1 

We shall adopt the approach which is illustrated in Figure 5. That is, velocities 
below the wave trough are found from integration of Equation (8). Above the trough a 
parabolic velocity distribution corresponding to the flow rate given by Equation (28) 
is added to the velocity ulr at the trough level. The total flow rate is then 

D-HI2 „2         

0=   \udz + ^r-+u,rH (29) 
8c 
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Some comparison between this approach and measurements is afforded by 
Table 1. There is obviously some scope for improvement but the message from this 
limited data set is not very clear. 

The surface slope 
The surface slope dr\/dx, albeit very small influences the current distribution and 
hence the net flow rate per unit width Q. Hence, it is not possible to achieve 
agreement with experiments if the surface slope is assumed to be zero. Not even for a 
"no current situation". 

In practical applications it is some times Q which is specified while df\ I dx is 
not. In such cases the model is easiest applied by trial and error. That is, 

1. A reasonable value of dx\ I dx is guessed 
2. Q is found by integrating Equation (8) and applying (29) to find Q. 
3. An improved value of dr\/dx is adopted. 

The "necessary" surface slopes to match the usual wave flume conditions with 
horizontal beds are usually inside the range ±5xlO"5. They are thus hardly 
measureable. 

Comparison with experiments 
A comparison of the model above with the "monocromatic waves, no current" 
experiment of Klopman (1994) is shown in Figure 5. 

0.6T 

-0.04    -0.02 0 0.12 0.02     0.04     0.06      0.08      0.1 
mean velocity [cm/s] 

Figure 5: Model comparison with Klopmans data, Monocromatic waves, Z?=0.5m, 
7"= 1.4s, W=0.12m, g=0m2/s. The flume bed was covered with a single layer of 2mm 
sand giving a Nikuradse roughness of r= 1.2mm. In order to achieve zero nett flow 
with the model, a surface slope of 0.0000017 must be assumed. 
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Figure 5 shows some discrepancy between the model and the measurements 
below z = 6mm. Part of this might be corrected by making adjustments to the eddy 
viscosity distribution in this area. However, the existing detailed data sets: van Doom 
& Godefroy (1978), van Doom (1981), Swan (1990) and Klopman (1994) show quite 
some variation. In particular, the negative velocities measured by Klopman at z < 
lmm are not parallelled by the other experiments. At any rate, comparison is very 
great detail is not warranted at levels smaller than the roughness height between this 
model, which is horizontally uniform, and measurements which, at this level, will 
depend upon the horizontal position of the probe. Measurements may show horizontal 
variation both on the scale of individual roughness elements and on the scale of the 
wave length if some reflection and/or circulation cells occur in the flume. 

While the agreement between the model and experiments with weak currents 
is good as shown by Figure 5, adjustments are necessary in order to model stronger 
currents. In general the data show a stronger deviation from the logarithmic profile 
than the model predicts. See Figure 6. 

c o 
to 
M 

-0.05 

Figure 6: Comparison between the model and the "monocromatic waves, following 
current" experiment of Klopman (1994). £>=0.5m, T=1.4s, H=0.\2m, g=008m2/s, 
n=1.2mm. Surface slope -0.00000145. 

Figure 6 shows a clear discrepancy between the model described above and 
Klopman's "following current" experiment. The reason is believed to be that this 
rather strong current (< u >= 0.92Aco) changes the wave motion and hence uw in the 

upper part of the flow. An indication of this change can also be found the direct uw - 
measurements of Supharatid et al (1992). 
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1 + 100—— (30) 

Figure 7 shows an improved model performance obtained by enhancing the 
wave Reynolds stress component (u w )BL (Equation 25) by the empirical factor 

u.   z 
Aca D 

while (u w )DECAY is kept unchanged. 
This is a purely empirical adjustment but it is thought to mimic changes to uw 

in the upper part of the flow due to extra vorticity of the wave motion caused by 
interaction with the strong current. There is little reason to believe that uw is changed 
appreciably inside the wave boundary layer by the current, cf the data Supharatid et al 
(1992) and Nielsen (1985, 1992). It is noted, however, that the same empirical 
adjustment would also improve the agreement with the zero-net-flow-data in Figure 5. 

Figure 7: Comparison of the model with empirically enhanced wave Reynolds stress 
to the same data as in Figure 6.   Surface slope -0.000021.   The curve on the left 
shows the enhance distribution of uw given by Equations (25), (26) and (30). 

Discussion 
The magnitude of the eddy viscosity and its capacity to transfer vorticity upwards 
from the bed influences the nature of the solution as discussed by Longuet-Higgins 
(1953). If the eddy viscosity is small, the u -profile would be strongly influenced by 
the end conditions through horizontal advection. In that case it would not be 
determined from the local force balance which leads to Equation (8). However 
Euation (35) leads to eddy viscosities which are very much larger than the laminar 
viscosity even in the "no current situations" corresponding to Figure la and Figure 4. 
Thus, in Klopman's "no current" experiment Equation (9) gives a bed shear stress of 
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0.015N/m corresponding to an eddy viscosity at mid depth of 0.00039m2/s, about 
four hundred times the laminar viscosity. This is probably the reason why "no current" 
experiments quite consistently show u -profiles like to ones in Figure la and Figure 5 
even thogh they may have different end conditions. 

In other words, it appears that under conditions like those of van Doom (1981) 
and Klopman (1994) and even the smooth bed experiments of van Doom & Godefroy 
(1978) (D.T.H) = (0.3m, 2s, 0.12m) the eddy viscosity is strong enough that the net 
flow is governed by the local conditions as expressed by Equation (8). The 
experimental conditions of Swan (1990), smooth bed and (D,T,H) = 
(0.369m, 0.893s, 0.06m) are probably close to the limit although he did show (his 

Figure 5a) a u -profile which is qualitatively similar to those observed under more 
vigorous flow conditions by can Doom & Godefroy (1978), can Doom (1981) and by 
Klopman (1994). 

These observations seem to justify the use of Equation (8) as the basis of 
modelling currents in the presence of waves under field conditions and in most 
laboratory situations. 

The present version of the model is open to a number of refinements. First of 
all with respect to the treatment of the flow above the wave trough. Secondly, the 
enhancement of the wave Reynolds stress in the presence of a stronger current should 
be investigated theoretically. 

Application of the model above model to surf zone conditions may require 
adjustments in three areas: 
1. An additional term due to bottom slope may need to be added to u w, 
2. A different expression for the flow above the wave trough, e g, a roller model 

may be needed The eddy viscosity must be enhanced in the upper part of the flow. 
Guidance in these respects may be found in the measuremetns of Nadaoka & 
Kondoh (1982) and Cox et al (1995). 

The strength of the present model compared with previous ones is that a 
detailed description is achieved at the bottom at the same time as a reasonable overall 
water balance. This is of course necessary in order to model natural situations with 
movable beds. 
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