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NUMERICAL PREDICTION OF BREAKING WAVES AND CURRENTS 
WITH A BOUSSINESQ MODEL 

Okey George Nwogu1 

ABSTRACT 

This paper describes the extension of a comprehensive numerical model for simulating 
the propagation and transformation of ocean waves in coastal regions and harbours to 
include wave breaking, runup and breaking-induced currents. The numerical model is 
based on a time-domain solution of a fully nonlinear set of Boussinesq-type equations 
for wave propagation in intermediate and shallow water depths. The equations are able 
to describe most of the phenomena of interest in the nearshore zone including shoaling, 
refraction, diffraction, reflection, wave directionality and nonlinear wave-wave inter- 
actions. The Boussinesq model is extended to the surf and swash zones by coupling the 
mass and momentum equations with a one-equation model for the temporal and spa- 
tial evolution of the turbulent kinetic energy produced by wave breaking. The waves 
are assumed to start breaking when the horizontal component of the orbital velocity at 
the wave crest exceeds the phase velocity of the waves. Numerical and experimental 
results are presented for the shoaling and runup of regular and irregular waves on a 
constant slope beach and wave-induced currents behind a detached breakwater. 

1.    INTRODUCTION 

The processes of wave breaking, runup, setdown and setup of the mean water level, 
turbulent energy production, generation of nearshore currents and generation of infra- 
gravity waves are important driving mechanisms for the transport of sediments and 
pollutants in coastal regions. A full mathematical description of the complex hydro- 
dynamics in the surf and swash zones is difficult due to the highly nonlinear and turbu- 
lent nature of flow. By making different simplifying assumptions, however, numerous 
mathematical models been developed which reproduce with varying degrees of suc- 
cess the different hydrodynamic phenomena that occur in the surf and swash zones. 

For waves propagating over simple bathymetries where shoaling, refraction and break- 
ing are the dominant wave transformation processes, models based on the conserva- 
tion of energy flux with an appropriate energy dissipation term have successfully been 
used to model the wave height variation in the surf zone (e.g. Battjes and Janssen 1978, 
Dally et al. 1985). Battjes and Janssen (1978) used a hydraulic jump analogy to derive 

Canadian Hydraulics Centre, National Research Council, Ottawa, Canada K1A 0R6 

4807 



4808 COASTAL ENGINEERING 1996 

the form of dissipation term while Dally et al. (1985) assumed that the dissipation rate 
was proportional to the difference between the local energy flux and a stable energy 
flux. Similar energy dissipation terms have also been incorporated into the mild-slope 
equation (e.g. Isobe 1987, Ozkan and Kirby 1993). 

Most surf zone wave transformation models are based on time-averaged integral wave 
properties and do not follow the breaking process in a time dependent manner. For 
applications such as irregular wave propagation and sediment transport over barred 
beaches, time domain modeling provides a more accurate description of the breaking 
and reformation process. A time-dependent breaking model is also able to simulate the 
transition region after the onset of wave breaking, where there is a rapid decay in wave 
energy with almost no change in the setdown of the mean water level. The transition 
zone plays an important role in the prediction of wave-induced currents and sediment 
transport in the surf zone (Nairn et al., 1990). 

Time-dependent numerical models based Boussinesq-type equations have successfully 
been used to simulate the nonlinear transformation of multidirectional ocean waves in 
intermediate and shallow water depths (e.g. Nwogu, 1994). Boussinesq equations can 
accurately describe most wave transformation processes outside the surf zone includ- 
ing shoaling, refraction, diffraction, reflection and nonlinear wave-wave interactions. 
Recently, several authors have extended Boussinesq models to simulate wave breaking 
in the surf zone including Zelt (1991), Karambas and Koutitas (1992), Schaffer et al. 
(1993), and Sato and Kabiling (1994). The models essentially incorporate a dissipative 
term due to turbulence stresses or the presence of a surface roller into the momentum 
equation. The models differ on how they treat the onset of breaking and the rate of 
wave energy dissipation. 

In this paper, we employ a one-equation turbulence model to describe the temporal 
and spatial evolution of the turbulent kinetic energy produced by wave breaking. The 
waves are assumed to start breaking when the horizontal component of the orbital ve- 
locity at the wave crest exceeds the phase velocity of the waves. The rate of production 
of turbulent kinetic energy is assumed to be proportional to the vertical gradient of the 
horizontal water particle velocity at the wave crest. The time-dependent model is ap- 
plicable to both periodic and non-periodic unidirectional and multidirectional waves. 

One advantage of extending Boussinesq-type models to the surf zone is the ability to 
implicitly model interactions between hydrodynamic processes occurring at different 
time scales. Wave-induced currents and mean water level fluctuations are implicitly 
included in the wave propagation model and are derived from a time-average of the 
predicted velocities and surface elevation respectively, without having to explicitly 
calculate radiation stresses and separately solve a time-averaged hydrodynamic model. 
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2.    THEORETICAL MODEL 

2.1    Fully Nonlinear Boussinesq Equations 

Boussinesq equations represent the depth-integrated equations for the conservation of 
mass and momentum for nonlinear dispersive waves, propagating in water of variable 
depth. The velocity potential, </>, can be expanded as power series in the vertical co- 
ordinate, z. An approximation is introduced for frequency dispersion by truncating 
the series at second-order, resulting in a quadratic variation for the horizontal velocity 
over depth, and a linear variation for the vertical velocity: 

u(z)   =   u„ + (*„ - z) [V(u„ • VA) +  (V • ua)Wh] 

+ 
(za + hf      (z + hf 

V(V< (1) 

w(z) -[u„-VA + (z + h)V (2) 

whereV = (9/9a;,9/%),/i(x)isthewaterdepthanduC( = V<f>\z=Za. Given a vertical 
profile for the flow field (Eqns. 1 & 2), the governing equations of fluid motion can be 
integrated over depth, reducing the three-dimensional problem to a two-dimensional 
one. The depth-integrated mass conservation equation can be written as: 

Vt + V J-h 
u dz = 0, (3) 

where rj(x, t) is the free surface elevation. Although Boussinesq equations were orig- 
inally derived for weakly nonlinear waves, a fully nonlinear variant of the equations 
was recently derived by Wei et al. (1995). The momentum equation, fully nonlin- 
ear up to the order of truncation of the dispersive terms, is derived from the dynamic 
boundary condition at the free surface as: 

u„< + gVV + (za - 7]) [V(iw • Vft) + (V • uat)Vh] 

+ (za + hf      (h + z,)2 

V(V Uat)    +    ~V(US • U5 + -D 

[(uot-V/i) + (A + »/)(V-uot)]V»/- |u6| + j- (u'u/)    =   0   (4) -— rUj \ub\ + — I U'W 
(h + T)) dz 

where g is the gravitational acceleration, u& = u(—h), us — u(rj) and ws = w{rj). 
Two additional terms have been introduced into the momentum equation to simulate 
the dissipation of wave energy due to bottom friction and wave breaking. fw is an em- 
pirical bottom friction factor while u'w' represents the shear stress due to breaking- 
induced turbulent velocity fluctuations («', v', w'). A semi-empirical turbulence clo- 
sure model (Section 2.2) is used to relate the turbulence stresses to the wave orbital 
velocities. 
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The elevation of the velocity variable za is a free parameter and is chosen to minimize 
the differences between the linear dispersion characteristics of the Boussinesq model 
and linear theory. An optimum depth for the velocity variable, za = -0.53A, gives 
errors of less than 2% in the phase speed from shallow water depths up to the deep 
water depth limit. 

2.2    Turbulence Model 

Several turbulence models have been proposed for fluid flow problems (see review 
by Rodi, 1980). In this paper, the standard one-equation turbulence model is used to 
describe the spatial and temporal evolution of the turbulent kinetic energy, k, produced 
by wave breaking. We do not attempt to model details of the turbulent motion, but 
rather, investigate the effect of turbulence on "the wave field. 

The key assumptions made in developing the model are: 

1. the breaking process is assumed to be "spilling" 

2. turbulence is initiated in the wave crest region due to large vertical gradients of 
the horizontal velocity, du/dz 

3. turbulence is produced only when the horizontal velocity at the wave crest ex- 
ceeds the phase velocity of the waves 

4. the rate of production of turbulent kinetic energy is proportional to the vertical 
gradient of the horizontal velocity at the wave crest 

5. turbulence is primarily convected in the crest front region with the horizontal 
component of the orbital velocity at the crest 

The Boussinesq eddy viscosity concept can be used to relate the turbulence shear 
stresses to the velocity gradients: 

uV = -vt-z- (5) 
oz 

where vt is the eddy viscosity. By substituting the expression for u(z) given in equa- 
tion (1), the dissipative term in the momentum equation (Eqn. 4) becomes: 

The rate of wave energy dissipation is thus governed by the magnitude of the eddy 
viscosity which is related to the turbulent kinetic energy, k, and a turbulence length 
scale, £t, by: 

vt = Vkit (7) 
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The turbulent kinetic energy is determined from a semi-empirical transport equation 
with a source term for turbulent kinetic energy production by wave breaking: 

us • Vk = vkV
2k + But + -o£= (8) 

The first term on the right hand side represents the horizontal diffusion of turbulent 
kinetic energy. This term is usually much smaller than the convective term, us • Vk. 
The second term represents the production of turbulent kinetic energy due to wave 
breaking. The parameter B is introduced to ensure that turbulence is produced only 
when horizontal velocity at the wave crest, u,, exceeds the phase velocity of the waves, 
C, i.e. 

r o |u,i < c 
B=\ (9) 

1 i k > c 
This criterion is valid for progressive waves and has been found to accurately predict 
the breaker location observed in experiments with regular waves shoaling on a constant 
slope beach. For irregular waves, an approximate phase velocity can be calculated 
using the average zero-crossing period, although an instantaneous phase velocity can 
also be determined using C = —r]t/\Vr]\. 

The last term on the right hand side of the transport equation (8) represents the dissi- 
pation of turbulent kinetic energy into heat. Co is an empirical constant with a repre- 
sentative value of 0.08 for most turbulent shear flows (Rodi, 1980). 

The rate of production of turbulent kinetic energy depends on vt which initially is un- 
known. Using the mixing length hypothesis which assumes a local balance between 
production and dissipation of turbulent kinetic energy, the value of vt for the produc- 
tion term is determined as: 

vt = + 
1/2 

(10) 

By choosing an arbitrary value for CD, the turbulence length scale tt becomes the only 
free parameter in the turbulence model which governs the rate of wave energy dissi- 
pation and turbulent kinetic energy production. £t is expected to be of the order of the 
wave height and is determined from comparisons of the numerical model results with 
experimental results. 

2.3   Numerical Solution 

The governing Boussinesq equations have been solved with an iterative Crank- 
Nicolson finite difference method, with a predictor-corrector scheme used to provide 
the initial estimate. The computational domain is discretized using a rectangular grid, 
with the dependent variables 77, ua and va defined at the grid points in a staggered 
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manner. The numerical solution procedure consists of solving an algebraic expres- 
sion for r] at all grid points, tridiagonal matrices for ua along lines in the x direction 
and tridiagonal matrices for va along lines in the y direction at every time step. An 
explicit second-order scheme is used for the turbulence transport equation. Details of 
the numerical solution technique can be found in Nwogu (1996). 

The boundaries of the computational domain may be specified as wave input bound- 
aries or solid walls. Along external or internal wave generation boundaries, time histo- 
ries of (ua, ua<xx, vatXy) or (va, vaiyy, u a iXy), corresponding to periodic or non-periodic 
unidirectional or multidirectional sea states are input. Waves propagating out of the 
domain are artificially absorbed in damping regions placed next to solid wall bound- 
aries. Artificial damping of wave energy is accomplished by introducing terms out of 
phase with the surface velocity and fluid acceleration into the continuity and momen- 
tum equations respectively. 

A simple extrapolation scheme is used to simulate wave runup. Consider the one- 
dimensional case where the shoreline boundary condition is given by zero mass flux, 
or equivalently, r)x = 0. When the water surface elevation 77,- at grid point i exceeds the 
elevation of an adjacent land point, /&i+1, we assume that the land point will be flooded 
at the next time step. The initial value of the water level on the the land point for the 
next time step is then extrapolated from the surface elevation at adjacent water points: 

T)i+i = irji - 377i_! if r\i > -hi+i (11) 

Outputs of the numerical model are time histories of the surface elevation and two com- 
ponents of the horizontal velocity at desired grid points in the computational domain, 
corresponding frequency and directional wave spectra at those locations, the instanta- 
neous water surface elevation at specified time steps, and the significant wave height 
distribution and time-averaged horizontal velocities over the entire computational do- 
main. 

3.    NUMERICAL AND EXPERIMENTAL RESULTS 

The numerical model was initially evaluated using data obtained from experiments 
carried out by Nwogu (1993) in the three-dimensional wave basin of the Canadian 
Hydraulics Center. A 1:25 constant slope concrete beach was constructed in the 30 m 
x 20 m x 3 m basin, equipped with a 60-segment directional wave generator. The 
toe of the slope was located 4.6 m away from the wave boards. The water depth in 
the constant depth portion of the basin was 0.56 m. Tests were carried out for a wide 
variety of regular and irregular, unidirectional and multidirectional waves. The water 
surface elevation along the centerline of the basin was measured with a linear array of 
23 water level gauges. The experimental setup is described in greater detail by Nwogu 
(1993). 
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Figure 1. Breaking and runup of a regular wave (T = 2 s) on a 1:25 beach. 

3.1    Shoaling of Regular Waves 

The numerical model was used to investigate the shoaling and breaking of a regular 
wave with period, T = 2 s, and height, II = 0.09 m, on a 1:25 beach. The computations 
were carried out using a grid size Ax = 0.1 m and time step size At = 0.04 s. A bottom 
friction coefficient, fw = 0.01, was used for all the computations. Figure 1 shows the 
spatial profile of the water surface elevation at an instant of time and the corresponding 
turbulent kinetic energy distribution. The turbulent kinetic energy is maximum close to 
the breaker location and decreases towards the shoreline. The turbulent kinetic energy 
exhibits an oscillatory behaviour in space due to the periodic nature of the production 
of turbulence from each breaking wave event. 

Figure 2 shows a comparison of the measured and predicted time histories of the sur- 
face elevation at four water depths, both outside and inside the breaker zone. The nu- 
merical model is able to reproduce the highly asymetric wave profile in the surf zone. 
The spatial variation of the average zero-crossing wave height and mean water level 
are plotted in Figure 3. Fairly good agreement is obtained between the numerical and 
experimental results. A turbulence length scale lt - 0.35 m with CD = 0.08 gave the 
best match of rate of wave energy decay through the surf zone. The solution is not 
unique, however, as other combinations of CD,£t, and the breaking criterion also give 
reasonable matches of the wave height decay. An extensive investigation is presently 
being carried out to recommend optimum values of the turbulence model parameters 
as a function of incident wave parameters. 
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Figure 2. Measured and predicted time histories for a regular wave (T = 2 s) shoaling 
on a 1:25 beach. 
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Figure 3. Measured and predicted spatial variation in wave height for a regular wave 
(T = 2 s) shoaling on a 1:25 beach. 
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Figure 4. Measured and predicted water surface elevations for an irregular wave with 
Tp = 1.5 s shoaling on a 1:25 beach. 

3.2   Shoaling of Irregular Waves 

The numerical model was applied to the shoaling of an irregular wave train on the 1:25 
beach. A sea state with a duration of 819.2 s was synthesized from a JONSWAP spec- 
trum with significant wave height, Hmo = 0.09 m, peak period, Tp = 1.5 s, and peak 
enhancement factor, 7 = 3.3, using the random phase method. The computations were 
carried out using Aa; = 0.075 m, At = 0.025 s and £t = 0.1 m. Figure 4 shows a com- 
parison of the measured and predicted water surface elevations at two shallow water 
depths. The numerical model is able to reproduce reasonably well the time-domain 
characteristics of individual wave breaking in an irregular wave train. 

The spectral densities of the measured and predicted water surface elevation time his- 
tories at different water depths are compared in Figure 5. The spectral estimates were 
averaged over 0.04 Hz frequency bands. Fairly good agreement is obtained between 
the measured and predicted wave spectra. The numerical model is able to accurately 
describe the cross-spectral transfer of energy due to nonlinear wave-wave interactions 
as well as the decrease in wave energy through the surf zone. 
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Figure 5. Spectral densities of surface elevation for an irregular wave with Tp - 1.5 s 
shoaling on a 1:25 beach. 
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Figure 6. Three-dimensional view of the instantaneous water surface elevation 
around an offshore breakwater a 1:50 beach. 

3.3    Wave-Induced Currents behind a Detached Breakwater 

The calculation of currents induced by breaking waves is important in modeling the 
transport of sediments and pollutants in the surf zone. The two-dimensional Boussi- 
nesq model was used to investigate the generation of currents behind an offshore break- 
water on a constant slope beach by shoaling and breaking waves. A generic example 
was used with a 400 m long breakwater placed 350 m from the shoreline on a 1:50 
beach. A normally incident regular wave with period T = 10 s and height H = 2m 
was generated at the 10 m depth. The computations were carried out with Ax = At/ = 
5 m, At = 0.2 s, and fw = 0.01. 

Figure 6 shows a three-dimensional view of the instantaneous water surface elevation 
around the offshore breakwater. Regions of the crest front with turbulent kinetic en- 
ergy present have been highlighted in white. The predicted wave height distribution 
is shown in Figure 7 while the time and depth-averaged velocity pattern is shown in 
Figure 8. Two circulation cells are observed behind the detached breakwater. This 
pattern is qualitatively consistent with known observations of wave-induced currents 
and the formation of tombolos behind offshore breakwaters. 
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Figure 7. Average wave height distribution behind an offshore breakwater for a reg 
ular wave (T = 10 s, H = 2 m) shoaling on a 1:50 beach. 
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Figure 8. Predicted time and depth-averaged velocity behind an offshore breakwater 
for a regular wave (T = 10 s, H = 2 m) shoaling on a 1:50 beach. 
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4.    CONCLUSIONS 

A fully nonlinear Boussinesq wave propagation model has been extended to the surf 
and swash zones by coupling the mass and momentum equations with a one-equation 
turbulent kinetic energy transport model. The waves are assumed to start breaking 
when the horizontal velocity at the wave crest exceeds the phase velocity of the waves. 
The rate of production of turbulent kinetic energy is assumed to be proportional to the 
vertical gradient of the horizontal velocity at the wave crest. The numerical model has 
been compared to experimental data for the shoaling of regular and irregular waves on 
1:25 beach. The model is able to reproduce reasonably well the frequency and time 
domain characteristics of waves in the surf zone. The results presented in this paper 
are of preliminary nature and further work is being carried to compare the numerical 
model with measured data on the spatial and temporal evolution of turbulence induced 
by wave breaking, the vertical distribution of currents in the surf zone, wave runup and 
nearshore circulation patterns. 
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