
CHAPTER 375 

THE EFFECT OF THE CL-VORTEX FORCE 
IN 3D WAVE-CURRENT INTERACTION 

M.W. Dingemans1, J.A.Th.M. van Kester2, A.C. Radder3 and 
R.E. Uittenbogaard2 

Abstract 

Experiments in flumes (i.e., Kemp and Simons, 1982, 1983, and Klopman, 1994) 
have shown that the mean current profile for following waves is more uniformly 
distributed than the corresponding current-only case, whereas the case of an op- 
posing current leads to a more straight profile. This paper is concerned with 
proving that inclusion of the so-called Craik-Leibovich (CL) vortex force in the 
mean-current equation gives, at least for a part, an explanation of this phenom- 
enon. 

Introduction 

For coastal dynamics applications it is essential to have an accurate prediction of 
the vertical structure of the mean current. The mean current, however, is strongly 
influenced by the free surface wave motion. Experiments in flumes (i.e., Kemp 
and Simons, 1982, 1983, and Klopman, 1994) have shown that the mean-current 
profile for following waves is more uniformly distributed than the corresponding 
current-only case, whereas the case of an opposing current leads to a more straight 
profile (see Figure 1). The purpose of this paper is to give a possible expanation of 
this behaviour. Hereto we consider the so-called Craik-Leibovich (CL) equation, 
derived by Craik and Leibovich (1976) in which a vortex force is present. The 
effect of this vortex force on the underlying flow is studied. 

First we consider the CL-equation. As it is essential to have shear in the veloc- 
ity profile, the used turbulence-closure model is subsequently described. Because 
the CL-equation is also used to describe the formation of Langmuir circulation 
cells, some properties of these are succintly described next. For numerical evalu- 
ations the treatment of the vertical momentum equation is possible in a number 
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Figure 1: Mean current profiles, after Klopman (1994). 

of ways. The most accurate one is described next. Finally the results of some 
numerical experiments are shown and compared with Klopman's measurements. 

The CL equation 

When deriving the mean-current equations in so-called Generalised Lagrangian 
Mean (GLM) coordinates, the following equation is obtained (see Andrews and 
Mclntyre, 1978, Eq. (3.8)): 

^        ' Dr. 

~PL 

PQ dxi      p0 -*m+-k&<&Qhx%. o 
 T  T 

where P{ is the pseudo-momentum and () is the Generalised Lagrangian mean, 
i.e. the mean over the perturbed position. Summation over repeated indices is 
used, i.e., the Einstein convention is applied. 

Leibovich (1980) has shown that under mild conditions, Eq. (1) reduces to the 
so-called Craik-Leibovich equation in Eulerian coordinates, which can be written 
as _ 

du  . ,_        ,N_ .        ,_       s 

dt 
+ (u • grad) u + grad it = u   A curl u , (2) 

where the pressure term ir is given by7T= - + gz + (-u • u) ,«is the (Eulerian) 

mean velocity and u is the wave part of the velocity. The so-called mild conditions 
for which the approximations are valid, amount to the condition that the waves 
are primarily dominated by their irrotational part. This implies that either the 
mean shear or the mean current is relatively weak and we thus have to impose 
the condition that the current is small with respect to the orbital velocity. 

Notice that with us —  (us,vs,0)    and u = (u,v,w)    we have, writing 
UJ = curl u, 

T=rA«= 
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= ,w [dx'~dy'),~u [dx~~dy~),u \d~z~^)~v \dy~~~i 
?du    Qdu 

T 

where the latter approximations are those of Craik (1982), valid for a flume with 
x directed along the flume. 

Although the inclusion of viscosity is not directly needed, it is needed in an 
indirect way, otherwise no shear would be present in the mean-current profile. 
Moreover, once generated vortices should remain bounded in magnitude and this 
is achieved by taking viscosity into account. Also in view of the application to 
a wave flume, where the lateral boundary conditions play an important role, we 
include the viscous stress tensor in the description. Equation (2) then is extended 
to 

— + (u • grad) u + grad Igz + - + ( -u • u ) j = us A w + - div cr' ,       (4) 

where divif' = da'kJdxk and a'ki is given by a1^ = (j)^duk/dxi + rf^dui/dxkj , 
while no summation over the indices on t] should be performed and the viscosity 
is usually non-isentropic. However, we take the (eddy) viscosity coefficient to be 
isentropic because of the scales on which the flow occurs here and the directions. 
Applying the Boussinesq-hypothesis, the stresses o^,- are approximated as 

_, (dui      duk\ ,-, 

°» = VT[tek
+-fc)> (5) 

while the eddy viscosity VT has still to be determined. In the present case we 
consider a cross section of the flume, i.e., we take dxi = 0. 

The turbulence-closure model 

For the specification of the eddy-viscosity coefficient VT three possibilities were 
considered. 

1. For a constant eddy-viscosity coefficient the velocity profiles near the bot- 
tom and the side walls are parabolic. This is physically not correct as 
for such situations the profiles should be logarithmic; v? should be flow- 
dependent. 

2. Prandtl mixing-length model. 

In the Prandtl mixing-length model, the mixing length £ is prescribed as 
a function of the geometry. Because in our case the lateral boundaries are 
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also of importance, the following variation of Bakhmetev's (1932) choice for 
shallow-water models is used for the mixing length: 

ity(b-y)(z + h) (l 
z + h 1/2 

(6) 

where b is the width of the flume, h is the still-water depth, £ is the free- 
surface elevation and K is von Karman's costant. This choice for £ yields a 
parabolic profile near the boundaries. As £ only depends on the distance 
to the boundaries, it is independent of the secondary circulations induced 
by the CL vortex force T0. No results from this model are shown. 

3.  k sdel. 

In our application of the k — e model the advection and dissipation terms 
in the direction of the flume (the x—direction) have been neglected. The 
transport equations for the kinetic energy k and the dissipation e are then 
given by 

Dk 

Dt 

De 

Dt 

where 

D/Dt = d/dt + v-V 

Pu = \VT 

= V- Vk 

= V- 
A       atj 

V, 

+ Pk~€ 

+ Pe ~C^T  , 

duk 
dxj 

v = (o,dv,dMy 
2 

v = (0,v,w) 

dxk 
with    dxi = 0 

e k2 

Pi - Cur-Pfc    and    uT = cM— 

and the constants are given by the standard setting: 

c„ = 0.09 , cu = 1.44 , c2£ = 1.92 , ak = 1 and at = 1.3 

(7a) 

(7b) 

(7c) 

(7d) 

(7e) 

(7f) 

Boundary conditions for the k — e model 

The turbulent kinetic energy is imposed both at the side walls and the bed. The 
pertinent value is obtained by applying local equilibrium between production and 
dissipation of kinetic energy. This leads to the Dirichlet boundary conditions 

k|y=0 = k|y=6 = K)2/v^    and     k\z=_h = (uty   /^ (8a) 

with M* and M' the shear-stress velocity at the sidewalls and the bottom re- 
spectively.  The shear-stress velocity u, is obtained by applying the logarithmic 
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boundary law for the velocity point nearest to the boundary. With S half the grid 
size near the side walls and the bed and ZQ the roughness length, the following 
relations hold 

—— — — log I — ]     for a rough wall (8b) 
M*        K        \ZoJ 

and 

—— = — log I —- I + 5.2    for a smooth wall , (8c) 
M*        «        \  v I 

where log is the natural logarithm. In the latter case the value M» is found by 
iteration. Because a staggered grid is used, the velocity u(S) is indeed known at 
the previous time step. At the free surface we take k = 0. 

For the transport equation for dissipation rate e we take the following Neu- 
mann-type boundary condition: 

(8d) 
dz s 

and at the free surface is taken e — 0. 

Langmuir circulations 

Equation (4) is basic to the generation of Langmuir circulations by an instability 
mechanism (Leibovich, 1983). The essential point is that a combination of a 
2D shear flow in the vertical xz plane with an irrotational Stokes drift of the 
wave field in the same direction is unstable to spanwise (i.e., in y) disturbances. 
Write now the vorticity vector as u> = (u)x,L0y,ujz) . Two different forms of 
CL-instability are recognised: 

1. CLl-type in which the vorticity-component u>x can be generated by a 
Stokes drift which varies in the lateral direction 

2. CL2-type in which the vorticity component LOX may be generated by a 
lateral uniform Stokes drift acting on a pre-existing vertical vorticity UJZ. 

The CL2-type instability is described by Leibovich (1977) and amounts to the 
following. It is supposed that the wind stress has produced a parallel shear flow 
u(z) and a Stokes drift us(z). A perturbation of the shear flow is now considered 
such that the total flow is described by (u(z) + u,v,w) . A perturbation of the 
pressure is not needed here. Then, the following behaviour of the perturbations 
is considered: 

u> = <l>(z) exp [at + i (my + kz)}     ,     u= \ikwz - m2w- 
{m2 + k2) \ fj 

m (— .u^ . .,  /_     _<j\ V = (m» + P) [tWz +       f)      '     f = a + lk{u + u )  > 
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with u being the wave part of the current.   For <j>(z) then is obtained in the 
non-viscous approximation the Rayleigh equation 

dz2 

/   2     ,2\  ,      \ k d2u     m2dudus)   , , , 
(^ + ^)^+|-—+ —_ —|0 = O. (9) 

With the further simplification of rolls aligned with the mean flow (i.e., k = 0) 
we get 

J2 (^~m2A+m2M(z)<t>^0   with   M(z) = ~j- . (10) 

The condition for instability now reads M(z) > 0 anywhere in the interval for 
z. The corresponding maximum growth is M1^2^). For the growth of Langmuir 
circulations it is thus necessary that M(z) is positive anywhere in the fluid, in 
other words, a positive shear of the current is required because the Stokes drift 
diminishes for increasing depth. However, Nepf and Monismith (1991) found 
experimentally, in a flume, that vortices developped for both M{z) > 0 and 
M.{z) < 0, see also the discussion in Nepf et al. (1995). 

Manipulation of the vertical momentum equation 

The numerical evaluation will be performed within an existing free-surface flow 
model in which the treatment of the vertical momentum equation will be worked 
out in a number of ways. 

Hydrostatic approach 

For the handling of the vertical momentum equation several possibilities exist. A 
very simple one consists of ignoring the vertical momentum equation altogether 
and determining the vertical velocity afterwards by an integration of the conti- 
nuity equation in which the solutions u and v from the horizontal momentum 
equations are used. These horizontal momentum equations in most simple form 
are _ 

du     dir      1 dcf'y-. .    dv     dW     1 SoL       qdu ,„.,. 
^ + 7T = -1T^   and   17 + 7T = -1^ + " V- n 
dt     ox     p oxk dt     oy      p oxk oy 

One of the ways of explaining the measured mean current profiles is the following 
qualitative one. We consider waves and current in a laboratory flume. In the 
lateral (y) direction, changes in the velocity field should occur. This has to 
be generated by the wall effects. The basic idea is as follows. Suppose that a 
circulation cell has developped. Suppose that the cell is such that in the middle of 
the flume the flow is in downward direction. The situation is as sketched in Figure 
2. In the upper part of the fluid, water with a small amount of momentum is 
transported towards the middle of the flume and consequently decelerates, while 
in the lower part of the fluid the reverse situation occurs.  In the upper half of 
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Figure 2: Flow in a lateral vertical section 

the fluid the downward velocity increases and in the lower half it decreases. In 
the middle of the flume dv/dy — 0 because of symmetry. From the continuity 
equation ux + wz = 0 in the middle of the flume then follows that du/dx < 0 in 
the upper half and du/dx > 0 in the lower half of the fluid. Consequently, the 
profile u(z) turns back in the upper part of the fluid and increases in the lower 
part. The result is a more uniform horizontal velocity profile in the vertical. 

A semi-Poisson approach 

A more precise formulation consists of splitting the pressure in a hydrostatic and 
a non-hydrostatic part. The solution procedure then consists of two steps. In the 
first step only the hydrostatic part of the pressure is used and in the second step 
a Poisson equation for the non-hydrostatic part has to be solved. Such a method 
has also been used by Casulli (1995). We write the pressure as the sum of a 
hydrostatic part p/, and a non-hydrostatic part q: p — p^ + q. The computation 
is split in two parts. 
Step 1 
Consider the continuity equation and for the momentum equations we only use 
the hydrostatic part of the pressure. These momentum equations, which are to 
be solved in the first step then are, in vectorial form 

-J + -gradpft = -5+-diver'    with   g = (0,0, -gf . (12) 
at      p p 

Step 2 
In the second step we consider the momentum equations without the convective 
terms and we only account for the non-hydrostatic part of the pressure. Further- 
more the vortex force is accounted for here. We then have the system: 

911     *        .        • - + -grad^T0 (13) 

with the vortex force T0 given by (3). 
We now apply the operation div on (13). For the velocities it is mandatory 

that divu = 0 (i.e., the continuity equation is applied as a side condition because 
it was already used in the first step).   The result is a Poisson equation for the 
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non-hydrostatic part of the pressure: 

div I - grad q I = div (14) 

After solving the pressure part q of this Poisson equation, the solution q is substi- 
tuted in Eq. (13) yielding new estimates for the velocities. This completes step 
2. 

Notice that the splitting is such that in step 1 a usual free-surface flow com- 
putation is performed. The second step gives the correction to the hydrostatic 
pressure, which correction is due to the vortex force. The vortex force, figuring 
at the right-hand side of the Poisson equation, is computed with the velocities 
estimated in the first step. 

Numerical experiments 

We now perform some computations to compare with the results of measurements 
of Klopman's physical experiments in the so-called Scheldt flume, which has a 
width of 1 m while the mean water depth in the experiments is 0.5 m. The walls of 
the flume are made of glass and are therefore hydraulically smooth. The bed was 
roughened with sand with a grain size of approximately 2 mm. The roughness of 
the bed was determined experimentally and the Nikuradse roughness was found 
to be 1 mm. The experimental set-up consists of two wave boards near each end 
of the flume; both wave boards generated waves and, at the same time, absorbed 
reflected waves. A discharge was generated with a constant outflow of 80 litres/s. 
For further details about the lay-out of these experiments we refer to Klopman 
(1994). 

We only consider the regular-wave experiments. The main parameters are 

wave period T = 1.44 s 

wave amplitude a = 0.06 m 

current velocity w = 0.16m/s 

mean depth h = 0.50 m 

bottom roughness height zQ = 0.04 mm 

Following waves 

In order to obtain enough shear for the CL-vortex force to be effective, the com- 
putations are started first without the CL force included and as initial value a 
uniform velocity of 0.16 m/s is used, whereas the turbulent kinetic energy k and 
the dissipation e are initially taken to be zero. After 200 s the turbulent logarith- 
mic shear flow has developped sufficiently for the CL-vortex force to be effective. 
From that moment on the CL-vortex force is included in the computations. At 
t = 300 s a new steady state is obtained with two eddies in the cross-section of 
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the flume. For the situation of waves following the current, the velocity profile in 
a cross section of the flume has been shown in Fig. 3.  The development of the 
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Figure 3: Velocity field in cross section at time t = 300 s. 

vertical profile of the horizontal velocity in time is shown at the left-hand side of 
Fig. 4; the time that logarithmic profile is developped is now taken as the origin 
of the time-axis for the further discussion. 
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Figure 4: Development in time of the vertical profile of the horizontal velocity for the 
situation of waves following the current (left); Comparison of the vertical profile for 
following waves with the measured profile (right). 

Because in the measurements a reference velocity, averaged over the depth, 
was based on the total flow, with the assumption of uniform flow over the width 
of the flume, a correction procedure is necessary now to account for the side-wall 
effects. For the situation of current alone (no waves) the computed vertically 
averaged horizontal velocity, evaluated in the centre of the flume, was taken as 
reference for the vertically averaged velocity as resulting from the measurements, 
likewise taken in the centre of the flume. This requires an enlargement of the 
measured velocity in the centre of the flume by a factor 1.135. This factor has 
been applied to all measurements, also those with following and opposing waves. 
The comparison of the vertical profile of the computation and the measurement 
with this correction is shown at the right-hand side of Fig.   4.   The inclusion 
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of the CL-vortex force thus has, for following waves, the effect of increasing the 
near-bottom horizontal velocity and decreasing the horizontal velocity near the 
free surface, as was also measured. The profile of the current over the width of 
the flume is shown for a height of 5 cm above the bottom at the left-hand side of 
Fig. 5. At the right-hand side is shown the development of the vertical current 
in the centre of the flume. 
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Figure 5: The horizontal current across the width of the flume for following waves, 
without waves (the logarithmic profile) and 300 s later (with waves); development in 
time of the vertical profile of the vertical velocity for the situation of waves following 
the current (right); Comparison of the vertical profile for following waves withe the 
measured profile (right). 

A test on the possibility of Langmuir circulations was devised by taking a 
very wide flume with otherwise the same parameters. In this situation also only 
two circulation cells developped and therefore the possibility of obtaining true 
Langmuir circulations is ruled out for this situation. In the present situation the 
flow is boundary-driven. The rigid side walls act as an agent for the development 
of the circulation cells. 

Waves propagating against the current 

Also in this case two eddies are generated, rotating in opposite directions as those 
generated for waves propagating in the same direction as the current. This is as 
was expected. The development of the vertical profile for the horizontal current 
is shown in Fig. 6. This shows that the flow near the bed is reduced, and that 
the flow near the free surface is not increased as was to be expected. Notice that 
Nepf and Monismith (1991) found from measurements in a flume for both waves 
following and against the current that circulation cells developped. This is also 
the case in the present computations. Why almost no effect on the current profile 
is found for opposing waves is not yet clear. This deserves further investigation. 

Conclusion 

The numerical experiments lead to the following conclusions. 
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Figure 6: Development in time of the vertical profile of the horizontal velocity for the 
situation of waves propagating against the current (left); Comparison of the vertical 
profile of the horizontal velocity for waves propagating against the current with the 
measured profile (right). 

1. Because also for a very wide flume only two circulation cells will develop, 
we conclude that the possibility of Langmuir circulation is ruled out for this 
situation. The flow is boundary-driven. 

2. The principal mechanism of change of the near-surface velocities is the 
lateral transport of low-momentum fluid from the rigid side walls to the 
centre of the flume. Therefore, we conclude that the CL-vortex force is, at 
least partly, responsible for the observed change in velocities due to waves 
upon currents. 

3. For both following and opposing waves circulation cells are found in the 
computations, which is in accord with the experiments of Nepf et al. (1995). 
Why the case for opposing waves has so little effect on the change of the 
current profile compared to the case without waves is not yet clear and 
deserves further investigation. 

Acknowledgement 

This work was commissioned by the National Institute for Coastal and Marine 
Management/RIKZ of the Dutch Public Works Department. 

References 

[1] Andrews, D.G. and Mclntyre, M.E. (1978). An exact theory of non- 
linear waves on a Lagrangian-mean flow. J. Fluid Mech. 89(4), pp. 609-646. 

[2] Bakhmetev, B.A., 1932. Hydraulics of Open Channels, Eng. Soc. Mono- 
graph, McGraw-Hill. 



4832 COASTAL ENGINEERING 1996 

[3] Casulli, V., 1995. Recent developments in semi-implicit numerical methods 
for free surface hydrodynamics. In: Advances in Hydroscience and Engineer- 
ing, Vol. II, March 1995, Beijing, China, 8 pp. 

[4] Craik, A.D.D. and Leibovich, S., 1976. A rational model for Langmuir 
circulations. J. Fluid Mech. 73(3), pp. 401-426. 

[5] Craik, A.D.D., 1982. The generalized Lagrangian-mean equation and hy- 
dronamic stability. J. Fluid Mech. 125, pp. 27-35. 

[6] Kemp, P.H. and Simons, R.R., 1982. The interaction between waves 
and a turbulent current: waves propagating with the current. J. Fluid Mech. 
116, pp. 227-250. 

[7] Kemp, P.H. and Simons, R.R., 1983. The interaction between waves 
and a turbulent current: waves propagating against the current. J. Fluid 
Mech. 130, pp. 73-89. 

[8] Klopman, G. (1994). Vertical Structure of the flow due to waves and 
currents; Laser-Doppler flow measurements for waves following or opposing 
a current. Delft Hydraulics, Report H840.30, Part II. 

[9] Leibovich, S., 1977. Convective instability of stably stratified water in the 
ocean. J. Fluid Mech. 82(3), pp. 561-581. 

[10] Leibovich, S., 1980. On wave-current interaction theories of Langmuir 
circulations. J. Fluid Mech. 99(4), pp. 715-724. 

[11] Leibovich, S., 1983. The form and dynamics of Langmuir circulations. 
Annual Review of Fluid Mechanics 15, pp. 391-427. 

[12] Nepf, H.M. and Monismith, S.G., 1991. Experimental study of wave- 
induced longitudinal vortices. J. of Hydraulic Engineering 117(12), pp. 
1639-1649. 

[13] Nepf, H.M., Cowen, E.A., Kimmel, S.J. and Monismith, S.G., 
1991. Longitudianl vortices beneath breaking waves. J. Geophys. Res. 
100(C8), pp. 16211-16221. 


