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PROPERTIES OF FREAK WAVES INDUCED BY TWO KINDS OF 
 NONLINEAR MECHANISMS 

 
Aifeng Tao1,Jinhai Zheng2, Botao Chen3, Hui Li3 and Ji Peng3 

 

We investigate the dynamic and kinematic characteristics of freak waves using a direct phase-resolved nonlinear 
numerical method. The focus is on the understanding of the effects of different nonlinear wave-wave interactions on 
freak waves development and characteristics in the evolution process of modulated Stokes wave trains. Long time 
simulations of modulated Stokes wave trains, with different parameters, are obtained. Based on these simulations, we 
find that there are different kinds of freak waves in different time scales due to two kinds of different nonlinear 
mechanisms. One is the modulation instability and another related to the wave group interaction. Both the dynamic 
and kinematic characteristics of the different kinds of freak waves are distinct. Occurrence of freak waves (especially 
of large height) is usually correlated with broadband wave spectra. 
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INTRODUCTION 
Freak waves also can be called Rogue waves, first introduced by Draper(1965), are surface 

gravity waves whose wave heights are much larger than expected for the sea state. There are many 
definitions and definition approaches for this kind of disastrous phenomena. One common operational 
definition requires the wave height Hf of Freak wave should be at least twice the significant wave 
height Hs. Abundant observations or evidence of Freak waves and some potential physical 
mechanisms leading to their formation can be found in two recent reviews by Kharif & 
Pelinovsky(2003) and Dysthe etc(2008). With the increasing number of terrible damages due to Freak 
waves, understanding the generation mechanism and characteristics of Freak waves has induced a 
considerable interest for both scientists and engineers. 

Usually, Freak wave events can be explained by presence of nonuniform currents or bottom 
topography that may induce wave energy to focus in a limit area for reflection, refraction, and wave 
trapping. These mechanisms are well understood and may be explained by linear wave theory(e.g., 
Peregrine 1976; Lavrenov 2006). However, these reasons are not suitable to explain freak waves which 
occur in the open ocean away from nonuniform currents or influence of bathymetry. The well-known 
New Year Wave is a typical example of them. It is natural to associate the appearance of this kind of 
freak waves with the Benjamin-Feir instability (Benjamin&Feri 1967). This instability, also known as 
modulation or sideband instability will result in focusing of wave energy in space and/or time as is 
shown by the experiments of Lake et. Al.(1977). Based on this idea, since the first work of 
Simith(1976), many authors(e.g., Trulsen 1996; Onorato 2002 etc.) tried to explain Freak waves by 
using of nonlinear Schrödinger equation(NLSE) and its generalizations such as the Dysthe equation. 
NLSE and Dysthe equation are the first and second term, respectively, in the hierarchy of envelope 
equations describing packets of surface gravity waves.  

One cannot deny the advantages achieved by the use of envelope equations, including NLSE and 
Dysthe equations, which are always be used to describe the packets of surface gravity waves. Many 
authors, from this way, get a similar conclusion: nonlinear development of modulation instability leads 
to concentration of wave energy in a small spatial region. And they provide much valuable information 
about Freak waves. However, the terms of envelope equations, such as NLSE or Dysthe equations, 
cannot free themselves from two restrictions: narrow bandwidth and weak nonlinearity. At the same 
time most researchers agree that the occurrence of Freak waves is closely related with high 
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nonlinearity. And for the uncertain mechanism of Freak waves, it is necessary to investigate the effect 
induced by bandwidth.  

So far, the most direct and applicable way to study on the generation mechanisms and 
characteristics of Freak waves is a direct numerical solution of Euler equation. This solution can be 
made by the methods published in several well-known articles, Dold, Clamond and Grue, Zakharov. 
Here, we use High Order Spectra Method(HOSM), which are developed by Dommermuth&Yue(1987). 

The main purpose of this paper is to study on the generation mechanisms of Freak waves by 
computing and analyzing the properties of water wave long time evolution process. Based on a direct 
simulation numerical method HOS, a series numerical runs are performed varying initial weakly 
modulated Stokes wave trains, which are constructed by a Stokes carrier wave and sidebands or 
perturbations. There are three realizations are performed with different wave steepness. The sidebands 
are all adopted according to the most unstable conditions, which have been particularly addressed by 
Tao(2012).The evolution time computed here is much longer than ( )3

00 / −Ο εT . Here 0T and 0ε are the 
time period and wave steepness of carrier wave. The definition of Freak waves applied here are the the 
common criterias 

5.20 >acη ,                                  (1) 
where a0 is the wave amplitude of carrier wave. Based on the numerical results, two different 
nonlinear water wave mechanisms present and the corresponding Freak wave are also different. 

 

BRIEF DESCRIPTION OF THE NUMERICAL APPROACH 
In order to get the direct numerical solution of Euler equation, the validated High Order Spectra 

method(HOSM) is applied in this study. The HOSM is a pseudo-spectral and Zakharov-equation-based 
method that follows the evolution of N wave modes and accounts for their nonlinear interactions up to 
an arbitrary high order, M, in wave steepness. The method obtains exponential convergence with 
respect to both N and M. By the use of the fast transform techniques, the method obtains an operation 
count that is (near) linearly proportional to N and M. Due to its high efficiency and accuracy, the 
HOSM is an effective approach for long-time and large-space simulation of nonlinear wave-field 
evolutions. The details of this method and it’s valuable applications in this field can be found in many 
reference, such as [Dommermuth&Yue, 1987; Wu, 2004; Tao, 2007, 2010,2011, 2012 ]. 

MODULATED STOKES WAVE TRAIN LONG TIME EVOLUTION 
In this section, we will investigate the characteristics of long time evolution processes initialized 

modulated Stokes wave train. The evolution process of narrow band modulated wave train, constructed 
by a Stokes carrier wave and imposed sideband according to most unstable modulation instability 
condition, will be studied firstly. Then the characteristics of extreme waves will be discussed to 
introduce the concept of new nonlinear mechanisms. 

Initial condition with weakly modulated wave train 
For the narrow band modulated wave train, the initial conditions we used are as following.  
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where )0,(xη and )0,(xsφ are respectively the free-surface elevation and potential of a right-going 

Stokes wave of steepness 0ε and wave number 0k . Here 000 ak=ε  and 0a  is the surface elevation of 

carrier wave. kkk Δ±=± 0 and ±θ are wave numbers and phases of sideband respectively. Those 
parameters are chosen as the most unstable conditions in the initial period. Three cases are performed 
here. The parameters are listed in Tab.1. As an example, the initial wave relative amplitude spectrum 
and wave surface for 09.00 =ε are shown in Fig.1. For all the cases, the calculation domain is 0100l . 
The parameters for HOS are M=6, N=4096, T0/dt=64. Here dt is the time step for simulation. 
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Tab.1. Parameters for modulated wave train 

Cases 0ε  0/ kkΔ  ±θ 2,1r Evolution time ( t/T0) 

I 0.05 0.1 4/π 0.1 20000 
II 0.07 0.12 4/π 0.1 7000 
III 0.09 0.15 4/π 0.1 4000 
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Fig.1. Initial wave relative amplitude spectrum (left) and wave surface (right) for 09.00 =ε  

Characteristics of Freak waves and the related mechanisms 
The variable )(max tη , shown in Fig.2, is the maximum of wave crests in the whole calculation 

domain at time t , i.e. ( ) ( ){ }txt cx ,maxmax ηη = . Then Fig. 2 shows the time evolution of the 

maximum amplification factor 0max aAf η≡  of the extreme waves. As a monitor index for the 

occurrence of Freak wave, fA  will be used frequently in this paper. And the relationship between fA  
and some physical parameters, such as bandwidth, Kurtosis etc., will be discussed in the following. 
There are three pictures, which correspond to different initial carrier wave steepness, in Fig.2. From all 
this pictures, the modulation-demodulation recurrence induced by modulation instability can be seen 
clearly. However, after the time scale of ( )3

00/ −Ο≈ εTt , the exact modulation-demodulation 
recurrence cannot happen again and the varying of Af presents chaotic or irregular characteristics. If 
we use 25.1≥sc Hη as Freak wave criteria and define 02aHs = . It can be seen clearly that the 

maximum of Af will be enhanced with the increase of 0ε  and the occurrence probability of Freak 

waves will increase distinctly when ( )3
00/ −Ο> εTt for any 0ε .  

There are two parameters always be used to describe the freak degree of the Freak waves. One is the 
local wave steepness fε and the other is the ratio R between the extreme crest height and the nearest 
trough depth. Here, we adopt these two parameters in the following expressions: 
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Here ( ) ( )2211 ,,, trtrtrtr xx ηη are the coordinate of two troughs near the Freak wave crest. 

fL and fH are the local wave length and wave height of Freak wave. 
As an example, two highest Freak waves correspond to two different time scales 

( [ )1000,0/ 0 ∈Tt and [ ]4000,1000/ 0 ∈Tt ) for 　0=0.09 are captured and those profiles are 
depicted in Fig.3. Some parameters for these two Freak waves are derived and listed in Tab.2. From 
Fig.3 and Tab.2, we know that the freak degree could be enhanced dramatically when the wave 
propagates for enough long time. It can be indicated from both the fε  and R . From Fig.3, it can be 
seen clearly that the Freak waves are different distinctly. The Freak wave present in the longer time 
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duration is more like a water wall. Similar examples can be found easily in the other two cases 
( 07.0,05.00 =ε ), although the freak degree for them will be lower relatively.  
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Fig.2. The evolution of wave surface maximum in whole computation domain with different initial carrier wave 
steepness. 
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Fig. 3. Largest wave profile in different time. (The left one is captured at t/T0=110 and the right one is captured 
at t/T0=1657 for ε0=0.09.) 
 

Tab. 2. Local information for Freak wave profiles in different time.

0/Tt  221 trtr ηη +
 0acη 0aH f fε R  

110 1.52 2.98 4.50 0.24 1.97 
1657 1.19 4.82 6.01 0.31 4.05 

It can be deduced that the modulation instability will take action rapidly along with the wave 
evolution process. It can reach its peak status at 2

00 ~/ −εTt  and then keep taking action as a dominated 
mechanism. However, when the modulated wave train evolutes to a further step 3

00/ −> εTt , more 
complex powerful nonlinear mechanisms will present rapidly. All the characteristics we addressed 
above are all in the physical domain. In order to make clear the new nonlinear mechanism, the wavelet 
transform is applied to two evolution processes, which are correspond to those two different Freak 
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waves respectively. The results are shown in Fig.4. From this picture, the recurrence and non-
recurrence phenomena can be seen cleary. And the wave spectra is wider in the longer time 
scale( 3

00/ −> εTt ) compare to the time scale 3
00/ −≤ εTt . That means more new wave components get 

enery and join the evolution process. It need to be mentioned that the spectra is not continuous, 
although it looks like from the picture, since this is the numerical direcret results. It necessary to get the 
full pictures of the spectra, particularly at the time corresponds to those two different Freak waves, as 
shown in Fig.5. 

  
Fig. 4. Time series in frequcy domian are wavelet transformed. (ε0=0.09.) 

0 1 2 3 4
k/k0

0

0.2

0.4

0.6

0.8

1

a(
k)

 / 
a 0

0 1 2 3 4
k/k0

0

0.2

0.4

0.6

0.8

1
a(

k)
 / 

a 0

 
Fig. 5. Amplitude spectrum at different time for ε0=0.09.(The time is t/T0=0,110 and 1657 respectively, from left 
to right. ) 

Notably to see from Fig.5, comparing to the broaden of the spectra band in the longer time scale, 
more evident is the new wave components within the band. As desrcibed by Liu(2008), in the time 
scale )( 0

3
0 TO −ε , the quintet resonance interaction presents and make appreciable change to the 

wavefield, but not the energy spectrum. This conclusion matchs our results very well. To a further step, 
more new wave componets mean more different wave group kinds can take action, as shown in Fig.6, 
wich are surface elevations at different time for ε0=0.09. These pictures show that when the new wave 
modes are active, more and more different kinds of wave groups are formed. The interaction between 
the wave groups will be more intense and complex. And this kind of wave-groups-interaction might be 
the physical reason for the Freak waves, especially the extreme ones of Freak waves. 
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Fig. 6. Surface elevation at different time for ε0=0.09.(The time is t/T0=0,110 and 1657 respectively, from left to 
right. ) 
 

CONCLUSIONS 
We consider a very long-time evolution of modulated Stokes wave trains, which is obtained using 

nonlinear HOS simulation (with order M =6). The steepness of the initial wave train is varying from  
ε0 = 0.05 to 0.09. Small disturbances at a broad band of wave numbers around the primary wave 
number are added at the initial time. In the initial period of evolution, modulation instability causes 
spreading of wave energy from the primary wave to its dominant sidebands and presents recurrence. 
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As a result, large waves are developed in the modulated process and disappear in the demodulated 
process. After ( )3

00 ~/ −Ο εTt  , as broader and broader sidebands are developed, the recurrence is lost, 
and the wave-field becomes irregular. Importantly, the wave peak height of the developed extreme 
waves becomes much larger. There are typical two distinct mechanisms. One is the modulation 
instability, which will take effects as the dominate mechanism after ( )3

00 ~/ −Ο εTt . The other can be 
interpreted as nonlinear wave group interactions heuristically, which might be the dominate 
mechanism in time scale ( )0

3
0 T−Ο ε  . 
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