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A 3D NUMERICAL INVESTIGATION OF FINE SEDIMENT TRANSPORT IN AN 
OSCILLATORY CHANNEL 

Tian-Jian Hsu1, Xiao Yu1, C. E. Ozdemir2 and S. Balachandar3

Recent findings on a diverse range of muddy seabed states revealed by 3D, turbulence-resolving simulations are first 
reviewed. These transitions have critical implications to offshore delivery of fine sediment in the ocean and wave 
dissipation. Assuming a small particle Stokes number, the Equilibrium approximation to the Eulerian two-phase flow 
equations is applied. The resulting simplified equations are solved with a high-accuracy pseudo-spectral scheme in an 
idealized oscillatory bottom boundary layer (OBBL). For a typical energetic muddy shelf, the Stokes Reynolds 
number Re∆ is no more than 1000 and all of the scales of flow turbulence and their interaction with sediments are 
resolved. With increasing sediment availability or settling velocity, the seabed state evolves from well-mixed 
sediment distribution, to the formation of lutocline and a complete laminarization of the OBBL. More recently, we 
further include rheological stress in the simulations in order to study the interplay between turbulence and rheology in 
determining the flow regimes and hydrodynamic dissipation. To include rheological stress, we extend the numerical 
model with a hybrid spectral and compact finite difference scheme. A sixth-order compact finite difference is 
implemented in vertical direction to keep the spectral-like accuracy. The model is validated with analytical solutions 
using simple Newtonian rheology in laminar condition. Preliminary results at Reδ=600 reveal that when rheology is 
incorporated, high viscosity can trigger earlier laminarization of OBBL. When OBBL is laminarized, sediments settle 
and higher concentration is accumulated near the bed that further enhances viscosity and hydrodynamic dissipation. 
Our preliminary finding that rheology encourages laminarization may explain why large attenuation of surface waves 
over muddy seabed is ubiquitous and the highest dissipation rate is often observed during the waning stage of a 
storm. 
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INTRODUCTION  
The state of muddy seabed in the coastal environments is the critical information to further evaluate the 
hydrodynamic dissipation, and their impact to coastal habitat due to pollutant, gas, and nutrient 
exchange. There are two challenges in modeling wave-induced fine sediment transport. Firstly, when 
sediment concentration is large, sediments can damp the flow turbulence and the resulting sediment 
concentration profile is significantly different from the commonly known Rouse profile. Secondly, for 
fluid mud driven primarily by waves on the continental shelves, the wave boundary layer itself is not 
fully turbulent. For example, the near bottom velocity measured by Traykovski et al. (2000) during 
significant fluid mud events is of free-stream oscillatory velocity amplitude U~ no more than 0.55 m/s 
and a wave period around T=10 sec (wave frequency ω=2π/T=0.628). The corresponding Stokes 
Reynolds number, defined as ν∆δ U~Re =  where ων∆ 2=  is the Stokes length scale and ν is the 
kinematic viscosity of water, is no more than 1000 (or wave Reynolds number Rew<5×105). According 
to Hino et al. (1976), the wave boundary layer at such low Reynolds number is only intermittently 
turbulent. Hence, the transitional nature of the turbulent boundary layer along with the attenuation of 
turbulence by the presence of mud makes modeling of wave-driven fluid mud transport difficult when 
using conventional Reynolds-averaged turbulence closure.  

Utilizing the fact that fine sediments in water are of very small particle response time, the 
equilibrium Eulerian approximation (Ferry and Balachandar 2001) has been applied to the two-phase 
formulation of turbidity currents for dilute flow (Cantero et al. 2007, 2009). Ozdemir et al. (2010) 
recently adopted this formulation for fine sediment transport in the wave boundary layer and retained 
only the leading order term in the equilibrium Eulerian approximation. The resulting equations 
incorporate the feedback effect of sediment on carrier flow turbulence only due to sediment-induced 
density stratification. Using a highly accurate pseudo-spectral scheme to resolve all the scales of the 
carrier fluid turbulence and the turbulence-sediment interaction at Reδ=1000, their simulation results 
reveal the existence of four flow regimes (or possible seabed states) of wave-induced fine sediment 
transport due to the variation of sediment availability and settling velocity (Ozdemir et al. 2011): 1) a 
well-mixed sediment concentration with no modulation in turbulence in very dilute flow (~1 g/L or 
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smaller), 2) formation of sharp sediment concentration gradient in the water column, i.e., lutocline, at 
near bed sediment concentration of O(1~10) g/l, but flow below the lutocline remains turbulent, 3) 
nearly laminar concentration profile of both the sediment and fluid phases but followed by burst events 
due to shear instability during flow reversal at near bed concentration of several tens per liter, 4) at 
O(100) g/l or greater, a complete laminarization throughout the wave cycle. The existence of these flow 
modes has critical implications to our capability in assessing the state of the muddy seabed and to 
further understand various applications related to fluid mud transport. For instance, regime I represents 
a significantly confined, but highly mobile transport close to the seabed. Understanding the transition 
between regime I and regime II and to further quantify the evolution of lutocline in regime II allow us 
to estimate the amount of offshore fine sediment transport via wave-supported gravity flow (e.g., 
Traykovski et al. 2000). Moreover, regimes III and IV represent significantly calm, gooey and less 
mobile fluid mud. Field observation suggests when regimes III and IV occur, significant damping of 
surface wave energy occurs. 

To further investigate the interplay between the collapses of turbulence, the rapid settling of 
sediment associated with laminarization, and more importantly, the initiation of rheological stress due 
to the rapid increase of sediment concentration near the bed, we extend the numerical model of 
Ozdemir et al. (2010, 2011) with the capability of modeling rheological stress. The governing equations 
and the modification of the numerical scheme necessary for including rheological stress are briefly 
reported in Section 2. Model results revealing the effect of rheological stress based on a Newtonian 
viscosity (viscosity parameterized as fast increasing function of sediment concentration) are reported in 
Section 3. Conclusions and future works are discussed in Section 4. 

 
 

 
 

Figure 1. A summary on the existence of four flow regimes revealed by Ozdemir et al. (2010). These regimes shown 
above are due to different sediment availability under the same wave intensity (Stokes Reynolds number Reδ=1000) 
and settling velocity (0.5 mm/s). 

 
MODEL FORMULATION  
We idealize the case of wave-induced turbulence at the bottom boundary layer in a typical coastal 
setting. For typical fine sediment transport in the continental shelf, the settling velocity is around 0.1~1 
mm/s (Hill et al. 2000). Hence, we consider silt with grain size of d=24 µm and a specific gravity of 
s=2.65. This results in a still fluid Stokes settling velocity of about Ws=0.5 mm/s. The particle response 
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time, defined as  ντ 182sdp =  can be computed to be 8.5×10-5 s. For the wave condition considered in 

the study with Reδ=400~1000, the timescale of the Stokes layer, Uf
~∆τ = , is more than an order of 

magnitude larger than the particle response time. Thus, it can be established that the particles are 
sufficiently small that their Stokes number, defined as St=τp/τf, is much less than 1. As a result, here we 
ignore the inertial effect of particles (Ferry and Balachandar, 2001) and simply define the 
nondimensional particle velocity  as the sum of fluid velocity, f

iu   and the particle settling velocity: 
 

                                                                                                                       (1) 
 
where the superscripts f and s stand for the fluid and particle phases, respectively and Vs is the 
nondimensionalized particle settling velocity. In this study, the free-stream velocity amplitude U~ and 
Stokes length scale  are chosen as the characteristic velocity scale and length scale to 
nondimensionalize the flow quantities. Moreover, we define the volume-averaged concentration over 
the entire volume ∀ of the computational domain, 
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Φ                                                                                          (2) 

 
to normalize sediment volumetric concentration ϕ*. Hence, for the remaining of this paper, the 
normalized sediment volumetric concentration Φφφ *=  is used. By substituting the algebraic 
relationship shown in equation (1) into the Eulerian-Eulerian two-phase equations and applying the 
Boussinesq approximation, which is valid for dilute sediment transport in water, the resulting governing 
equations can be greatly simplified (e.g., Cantero et al. 2007). The continuity and momentum equations 
of the fluid phase can be written as: 
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where i=1, 2, 3 representing streamwise, spanwise and vertical direction, respectively and p is the 
nondimensionalized dynamic pressure, A represents a mean (normalized) pressure gradient that drives 
the flow and f(ϕ) is a Newtonian rheology function, which will be discussed later. In the present 
problem of an oscillatory channel flow, the time variation of the dimensional free-stream velocity is 
given as sinusoidal flow with amplitude U~  and angular frequency ω. In the free stream, away from the 
bottom boundary layer, the momentum equation can be simplified to inviscid flow to obtain the flow 
forcing  
 

                                                               (5) 

 
The third term on the right-hand-side of equation (4) represents the feedback effect of the sediment 
phase on the carrier fluid via sediment-induced density stratification. Here the bulk Richardson number 
Ri is defined as: 
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In this study, we consider the simple Newtonian rheology proposed by Einstein (1906) 
 

                                                                                                                                   (7) 
 
This linear relationship is valid for mono-sized spherical particles in dilute condition. For this study, the  
Φ is chosen to be 1% and dilute assumption is satisfied.  
 Finally, the normalized sediment volumetric concentration is calculated by the conservation of 
sediment mass: 
 

                                                                                  (8) 

 
The term on the right-hand-side represents an effective diffusive flux.  Here Sc is the Schmidt number 
of the sediment phase. The governing equation of particle motion, when applied in the Lagrangian 
framework, contains no diffusive effect, i.e. Sc=∞. However, in the present Eulerian simulations, a 
diffusive term is required not only for numerical stability but also to account for subscale particle 
motion through sub-grid interactions. 
 The velocity boundary conditions at both the top and the bottom boundaries are no-slip wall 
boundary conditions. Periodic boundary conditions are imposed at the lateral boundaries of the 
computational domain. For particle concentration, the following relation is imposed at both top and 
bottom boundaries of the computational domain: 
 

                                                                                                                                   (9) 

 
This boundary condition imposes no net transport of sediment across the top and bottom boundaries. 
Periodic boundary conditions for sediment concentration are applied along the streamwise and 
spanwise directions. These boundary conditions in turn imply that the total volume of particles remains 
constant in the domain throughout the computation (Φ is constant throughout the computation). This 
integral property has been confirmed as a verification test in the present computations. 
 The size of the computational domain is selected to be 60Δ×30Δ×60Δ along the streamwise, 
spanwise and vertical directions, respectively. Thus, the distance from the bottom boundary to the 
center plane of the channel is chosen to be 30 times the Stokes layer thickness. The selected domain 
size is exactly the same as that of Spalart & Baldwin (1989) and their domain is the largest and the 
most conservative among the different numerical studies. By examining the two point correlation 
function, Ozdemir et al. (2010) showed that this domain size is sufficiently large to capture the main 
turbulent characteristics at ReΔ=1000 in the case of clear fluid. For Re∆=600, the computational domain 
is discretized into 128×128×193 elements. Hence, the total amount of grid points is around 3.2 
millions.  
 To ensure high numerical accuracy, the numerical scheme adopted by Ozdemir et al. (2010, 2011) 
is based on a pseudo-spectral scheme. However, it is difficult to further incorporate particle stresses 
(rheology) in a pseudo-spectral scheme. Recently, this code is revised with a sixth-order compact-finite 
difference scheme in the vertical direction in order to investigate the interplay between turbulence and 
rheology in determining the resulting flow regimes and flow dissipation. A general compact finite 
difference scheme for one-dimensional problem has the form (Lele 1992) 
 

                                                                                                              (10) 

 
where uj are the function values given at the grid points xj on set In and Im, and uj

(p)  are the values of the 
p-th derivative of the function at the corresponding grid points. To resolve the turbulent boundary layer, 
Chebyshev collocation points are used, where the grid points cluster at both the top and bottom 
boundaries.  
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                                                                                                                   (11) 

 
For our study, a tri-diagonal centered sixth order compact finite difference scheme is applied on the 
interior grid points, where the points sets In = {i-1, i+1}, and Im={i-2, i, i+2,}. For the grid points near 
the top and bottom boundaries, a one-sided scheme with the same order of accuracy is implemented. 
The detailed derivation of the compact finite difference scheme on non-uniform grid can be found in 
Shukla & Zong (2005). The first and second order derivatives, therefore, can be written as 
 

                                                                                                             (12) 

 
where A, A2 are tri-diagonal matrices, and B, B2 are banded matrices.  

The flow field is advanced using Crank–Nicolson scheme for the diffusion terms. The non-linear 
advection terms are calculated by the Arakawa method with the 3/2 de-aliasing law, and integrated by a 
third-order low-storage Runge–Kutta scheme. More details on the implementation of this numerical 
scheme can be found in Cortese and Balachandar (1995). 

Although the rheology closure adopted in the present study is quite idealized comparing to realistic 
mud, it allows as to begin to evaluate the effect of Newtonian rheology on the flow regimes via an 
enhanced viscosity due to sediment concentration. More important, the simple linear rheology closure 
used in equation (7) allows us to derive analytical solution for laminar condition in order to validate the 
numerical scheme. Excellent agreement between the numerical results and analytical solutions is 
obtained.  

RESULTS 
Simulation is carried out at Re∆=600, which represents typical wave condition of typical low energy 
muddy continental shelves with U~ =0.4 m/s and wave period T=7.0 sec. Sediment availability is 
specified as Ri=1.0×10-4 with a nondimensional settling velocity Vs=4.5×10-4. According to prior 
studies, such as Spalart & Baldwin (1989) and our own direct numerical simulations (for clear fluid), 
flow at Re∆=600 is not fully turbulent. However, flow instabilities occur during flow reversal that 
further leads to chaotic motion before the following peak flow. Hence, ensemble-averaged sediment 
concentration profiles are similar to the regime II condition discussed in Ozdemir et al. (2010, 2011) 
where the lutocline feature is observed that further separates the lower turbulent region from the upper 
quasi-laminar region (see Figure 1 and Figure 4(b1) and (b2)).  

It should be first mentioned here that because the flow is not fully turbulent for Re∆=600, adding 
sediments further damps flow turbulence via sediment-induced density stratification (Ozdemir et al. 
2011) and we found that when computing the simulations for sufficiently amount of wave periods, flow 
eventually laminarizes. This feature is quite different from that observed for Re∆=1000 in more 
turbulent condition. In the present simulation of Re∆=600, flow eventually laminarize after 25 wave 
period. Hence, the key issue to be investigated is whether adding rheological effect may delay or 
encourage laminarization. 

To illustrate the turbulent state of the calculated flow field, the turbulent coherent structure is 
identified by Q-method (Hunt et al. 1988), where the positive second invariant Q of velocity gradient is 
used: 

 

                                                                                                                 (13) 

 
A small value (very close to 0) is typically used to identify the coherent structure (Q=0.2 is used here). 
To further illustrate the mixing and suspension of sediment near the bed, the iso-surface of normalized 
sediment concentration of ϕ=2.5 is shown. These flow visualizations during peak flow and flow 
reversal are presented in Figure 2 and Figure 3, respectively. Comparing to the model results without 
rheology, we find that the present Newtonian rheological stress with an enhance viscosity tends to 
attenuate more turbulence and eventually trigger earlier laminarization. Preliminary results reveal that 
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when rheology is incorporated (Figure 2(b1), (b2)), wave boundary layer during flow peak is less 
turbulent comparing to that without rheology (Figure 2(a1), (a2)). Similar features are also observed 
during flow reversal (see Figure 3). Reduced turbulence at Re∆=600 due to rheology, eventually leads 
to earlier laminarization. For the present simulation with Einstein rheology, laminarization occurs quite 
early. It only takes four wave periods for laminarization (comparing to twenty wave periods when 
rheology is excluded). Laminarization further causes more significant settling, higher sediment 
concentration accumulated near the bed, and finally results in enhanced hydrodynamic dissipation. Our 
preliminary finding that rheology encourages laminarization may explain why large attenuation of 
surface waves over muddy seabed is ubiquitous and the highest dissipation rate is often observed during 
the waning stage of a storm (A. Sheremet (U. Florida) and P. Traykovski (WHOI), personal 
communications). 
 
 
 
(a1)                                                                                                                                                                                                                                                                                            (b1) 
 
 
 
 
 
 
 
 
 
 
 
(a2)                                                                                     (b2) 
 
 
 
 
 
 
 
 
 
Figure 2. Iso-surface of sediment concentration (ϕ=2.5) and turbulent coherent structure (Q=0.2) 
under peak flow (wave crest) calculated without rheology ((a1) and (a2)) and with Newtonian rheology 
of Einstein (1906) ((b1) and (b2)). 
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(a1)                                                                                                                                                                       (b1) 
 
 
 
 
 
 
 
 
 
 
 
(a2)                                                                                      (b2) 
 
 
 
 
 
 
 
 
 
Figure 3. Iso-surface of sediment concentration (ϕ=2.5) and turbulent coherent structure (Q=0.2) 
under flow reversal calculated without rheology ((a1) and (a2)) and with Newtonian rheology of 
Einstein (1906) ((b1) and (b2)). 
 

 
                       (a1)                                       (b1)                                     (c1)                     
 
 
 
 
 
 
 
 
 
 
 
                       (a2)                                      (b2)                                      (c2)       
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Ensemble-average flow velocity ((a1) and (a2)), sediment concentration ((b1) and (b2)) and 
turbulent kinetic energy ((c1) and (c2)) under wave peak (upper panels) and during flow reversal 
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(lower panels) before strong laminarization occurs. The solid line shows model result with Einstein’s 
rheology model, and dashed line shows results without rheological stresses. 
 

More quantitative comparison can be made by examining the ensemble-averaged flow velocity, 
sediment concentration and turbulence kinetic energy (TKE) profiles during flow peak and flow 
reversal (see Figure 4). In the present simulation, ensemble average is carried out via spatial averaging 
over the x-y plane. Sediment concentration profiles are more or less similar throughout the wave cycle, 
which is representative of fine sediment with small settling velocity. A sharp negative concentration 
gradient, namely the lutocline, is observed in the upper region of the wave boundary layer. TKE is 
basically shot down in the lutocline region and above but significant turbulence is observed below the 
lutocline (see Figure 4(c2)). During flow peak, it is quite clear that TKE near the bed with rheology 
incorporated is 30%~50% lower than that without rheology (see Figure 4(c1)). Due to lower 
turbulence, sediment concentration gradient very near the bed is also larger when rheology is included. 
More interesting features are observed during flow reversal. When rheology is not considered, the 
region below the lutocline is turbulent with significant TKE. On the other hand, when rheology is 
included, TKE is almost zero throughout the region below the lutocline except very near the bed where 
strong TKE is observed. In other words, when rheology is included, the region of significant turbulent 
production is greatly suppressed. Since the intensity of turbulence scales with the length scale of the 
turbulent region, this explains why turbulence is much lower when rheology is incorporated. More 
detailed analyses on the TKE budget and the transitions between the more turbulent region and quasi-
laminar region are necessary in order to pinpoint the mechanisms causing the reduced turbulence and 
subsequent earlier laminarization due to rheological effects.  

CONCLUSION 
Turbulence resolving simulations reveal the existence of four flow regimes from well-mixed condition, 
to the formation of lutocline and a complete laminarization due to increasing sediment-induced density 
stratification. By implementing a Newtonian rheology of Einstein (1906) where the viscosity increases 
with sediment volumetric concentration, we demonstrate that the enhanced viscosity tends to damp 
more turbulence and in some cases to trigger earlier laminarization. Hence, there is a strong and 
complex interplay between boundary layer turbulence, turbulence modulation by sediment and 
rheological effect during wave-mud interaction. Future studies will focus on identifying the key 
mechanisms to explain the damping of turbulence due to Newtonian rheology and to quantify the 
energy dissipation. Non-Newtonian rheology (shear thinning or Bingham plastic) should be 
incorporated to investigate more realistic mud transport processes. Higher order inertia effects should 
be further included in order to evaluate the effect of preferential concentration and extended the 
applicability of the present numerical model to coarser grains.  
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