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Based on experimental data, the problem of parametrization of spatial variation of the phase shift (biphase) between 

the first and second nonlinear harmonics of wave motion during wave transformation over sloping bottom in the 

coastal zone is discussed. It is revealed that the biphase values vary in the range [–π/2, π/2]. Biphase variations 

rigorously follow fluctuations in amplitudes of the first and second harmonics and the periodicity of energy exchange 

between them. The empirical relation applied in modern practice to calculate the biphase, which depends on the 

Ursell number, is incorrect for calculating the biphase for wave evolution in the coastal zone, because it does not take 

into account periodic energy exchange between the nonlinear harmonics. The new approximations of the biphase 

values for typical scenarios of wave transformations are suggested. It was demonstrated that the biphase of breaking 

waves defines breaking index and breaking type.  
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INTRODUCTION 

The evolution of waves in a coastal zone is weakly nonlinear dispersive process. It is characterized 

by growth of the highest multiple nonlinear harmonics of the main wave movement. Nonlinear 

harmonics arise as result of near resonant triad interactions which characteristic feature is the periodical 

exchange of energy between the first and highest harmonics. As a result of this process both their 

amplitudes and shifts of phases between them periodically change also. Shift of phases between the first 

and second nonlinear harmonics is described by the biphase. For example in simple model of free 

surface elevations with two nonlinear harmonics: 

                              η(x,t)=a1(x)cos(k1x-ω1t+φ1 )+a2(x)cos(k2x-ω2 t+φ2)                                       (1) 

where 
2 12  , 

2 12     k k  ; t is time; ω is the angular frequency; k is the wavenumber, 
1, 2 a  is the 

amplitude; φ1,2 is the phase; subscripts 1 and 2 correspond to the first and second harmonics; δ is 

detuning by the wavenumbers, determined by the dispersion relation and corresponding to near-

resonance triad interactions occurring with spatial period Lb (Madsen, Sorensen, 1993): 

             Lb=2π/δ                                                                             (2) 

In this model biphase is 
1  22     , (Elgar, Guza 1986).  

For irregular waves, the biphase can be calculated by the following formula (Kim, Powers, 1976): 
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B E A A A      is the bispectrum,  is the angular frequency, A represents the 

complex Fourier amplitudes of the free surface elevations, and E is the averaging operator. The 

frequencies of the first and second harmonics are determined by the positions of local maxima of the 

wave spectrum.  

The biphase is characterized by a change in wave asymmetry, which influences on a direction of 

sediment transport in the coast zone (Bailard, Inman, 1981; Doering, Bowen, 1995). In Stokes waves, 

the biphase is equal to zero, since the positions of wave crests generated by the first and second 

nonlinear harmonics coincide (Hasselman et al., 1963). 

Field studies of biphase variation in the coastal zone performed in (Elgar, Guza, 1985) revealed 

that it varies weakly around zero at a depth of around 9 m and is close to –π/2 near the coast. Such 

variation in the biphase corresponded to observed changes in wave symmetry. In deep water, waves 

were almost symmetric in shape, but near the shore, they had a "saw-tooth" shape. Numerical 

simulation in (Elgar, Guza, 2986) showed that the initial phases of the nonlinear harmonics for quite 
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steep bottom slope of the coastal zone do not substantially influence the general trends of biphase 

variation: it is close to zero in relatively deep water and tends to –π/2 near the coast in shallow water. 

The data of field experiments also showed that the evolution of the biphase is influenced by relative 

water depth and relative wave height (Doering, Bowen, 1986, 1995), but no clear dependence of the 

biphase values on these parameters has been obtained.  

The values of a biphase are used at modeling of waves on spectral stochastic models and in SWAN 

model. For modeling a parametrization of change of a biphase on the Ursell number is used (Doering, 

Bowen, 1995; Eldeberky, Battjes , 1995):  

                                                       β= -π/2+π/2‧tanh(m/Ur)                                                           (4) 

Ur=(3/4)‧ak/(kh)
 3

 – Ursell number, m=0.63 or 0.2 – constant, a – wave amplitude, k – wave number, 

h – water depth.  

Eq.4 with m = 0.63 is based on the results of analyzing the data of four field measurements of wave 

transformation at from four up to seven points of the coastal zone above bottom profiles with different 

mean inclinations, including a profile with underwater bar (Doering, Bowen, 1995). Eq.4 with  m = 0.2 

is proposed as a result of analyzing data from a laboratory experiment on wave transformation with the 

JONSWAP spectrum with a spectral peak frequency of 0.2 Hz and a significant-wave height of 0.9 m 

above an even inclined bottom from a depth of 4.1 m (Eldeberky, Battjes , 1995).  Note that the biphase 

values obtained in Eq.4 are always negative and are in the range [0, –π/2].  For Ur<1, they are close to 

zero, and for an increase in the Ursell number, they will tend to –π/2. 

In deriving empirical Eq.4, authors noted that not all the experimental data corresponded well to 

the given approximation (Doering, Bowen, 1995; Eldeberky, Battjes , 1995). The scatter of the biphase 

values for Ur < 1 in the field data ranged from–π/6 to π/3, and in the laboratory data, from –π/3 to π/3. 

For Ur Eq.4 are in the range [–π/18, π/18] of the 

limiting value –π/2. Nevertheless, despite such significant deviations, Eq.4 with the constant m = 0.63 is 

used in SWAN model to calculate the biphase values for Ur>1, and for Ur<1 the biphase is assumed 

equal to 0 (www.swan.tudelft.nl).  

The existence of positive biphase values and deviation from Eq.4 can be explained by the presence 

of periodic energy exchange between the first and second nonlinear harmonics during near-resonance 

triad interaction. The evolution of biphase and amplitudes during one period of nonlinear exchange of 

energy between harmonics was described in detail in (Kuznetsov, Saprykina, 2012). The second 

harmonic occurs with a phase shift of –π/2 with respect to the first harmonic; for a certain time during 

which nonlinear processes predominate, the amplitude of the second harmonic increases, and the 

amplitude of the first harmonic decreases, the biphase remains close to this value. With an increase in 

amplitude of the second harmonic, the influence of dispersion processes intensifies, which leads to 

waves of the second harmonic lagging behind the first harmonic, as well as to a change in the biphase 

value from negative to positive. When the amplitude of the second harmonic is maximum, the biphase 

is equal to zero. Positive biphase values correspond to the back transfer of energy from the second 

harmonic to the first. Due to nonlinear process of back transfer of energy amplitude of second 

harmonics decreases practically to zero and due to dispersion process the biphase gradually becomes 

close to +π/2. Thus, the periodic energy exchange between nonlinear harmonics can substantially 

influence the evolution of the biphase and variations in it occur in a wider range, from –π/2 to π/2, than 

are yielded by Eq.4.  

The existence of periodical exchange at transformation of waves in a coastal zone was confirmed 

by data of field experiment four typical scenarios of wave transformation for the position of the 

maximum amplitude of the second harmonic was determined (Saprykina et al., 2009, 2013) : 

1. the amplitude of the second harmonic increases significantly only near the coast;  

2. the amplitude of the second harmonic reaches the maximum value within the studied area of the 

coastal zone and a starkly pronounced period of energy exchange between the first and second 

nonlinear harmonics is observed; Environmental fluctuations may have a negative effect on the 

number of species. This effect is due to physiological stress, which may even cause the extinction 

of some species; 

3. the amplitude of the second harmonic varies weakly in the coastal zone; Environmental variability 

may have a positive effect on richness because it relaxes interspecific competition; 

4. amplitudinally significant second harmonics already exist at the seaward boundary of the studied 

part of the coastal zone and half of the period of the energy exchange - backward energy transfer 

between the second and first harmonics - is observed.  



 COASTAL ENGINEERING 2016 

 

3 

It was demonstrated also that realization of the scenarios depends on the relation between the local 

Iribarren number - ξ =  Ŭ ,H L where α is the mean bottom slope, H is the local wave height, L is the 

local wavelength, and on the wave steepness (H/L) at the seaward boundary. The wave transformation 

scenarios with the pronounced periodic energy exchange between nonlinear harmonics (2 and 4) will 

be, if ξ< 7*H/L. If ξ > 7*H/L, scenarios 1 and 3 will be realized.  

The main purpose this work is to find out regularities of evolution of a biphase in the waves 

transforming over sloping bottom due to near resonant triad interactions and to investigate the 

possibility of parameterization of biphase variations. 

BIPHASE OF WAVES TRANSFORMING OVER AN INCLINED BOTTOM 

Field experiment 

Wave transformation with the characteristic periodic energy exchange between the amplitudes of 

nonlinear harmonics was observed in the Shkorpilovtsy 2007 (Black sea, Bulgaria) field experiment for 

wave propagation over gentle sloping bottom profile with underwater bar (Fig. 1).  

 
Figure 1. Bottom profile and positions of wave gauges (x), field experiment Shkorpilovtsy 2007. 

 

During the experiment 7 resistance and 8 capacity wire type gauges were installed for synchronous 

registration of free surface elevation at sampling rate from 5 to 20 Hz. The mean bottom slope was 

0.022. Duration of wave records was from 20 min up to 1 hour and total 65 wave records were 

measured.  

All analyzed regimes of waves on the seaward wave gauge correspond to condition  

         0.095 < h/L< 0.3,                                                                   (5) 

where h – water depth and L – wave length on the seaward wave gauge. 

As the wave height, the significant wave height was calculated: 

                                                             04sigH m ,                                                                    (6) 

where 0

0

(ɤ) ɤm S d



  ; S is the wave spectrum.  

The period was determined as the period of the spectral maximum. In Table 1 are parameters of 

waves of four characteristic scenarios of wave transformations. 

 
Table 1. Wave parameters of field experiment 

No. of 
measurement 
series 

Period, 
T, s 

Height, 
H, m 
 

Steepness, 
H/L 

Iribarren 
number, ξ 
 

Mean bottom 
slope, α 

Wave 
transformation 
scenario 

7 5.9 0.55 0.014 0.194 0.022 1 

28 4.5 0.64 0.0212 0.156 0.022 3 

34 6.9 1.16 0.0252 0.144 0.022 2 

60 5.9 1.27 0.0322 0.127 0.022 4 
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The biphase values for wave regimes of the field experiment are close to Eq.4 with the constant 

0.63 only for Ur>1 (scenarios 1, 2, and 4). The biphase values for Ur < 1 are not described by this 

approximation. The change in the biphase in scenario 3 does not entirely coincide with Eq.4. For Ur < 

1, positive biphase values are observed, related to the periodic energy exchange and not described by 

Eq.4 (Fig. 2a). 
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Figure 2. Dependences of biphase on Ursell number (a), kh (b) and ah (c) for different scenarios of wave 

transformations in field experiment Skorpilovtsy 2007: scenario 1 – blue, scenario 2 – red, scenario 3 – 

black, scenario 4 – green. Solid line Eq.4 with m=0.2, dotted line – with m=0.63. 

 

Figures 2b and 2c show the change in the biphase as a function of nonlinearity parameter a/h and 

dispersion parameter kh. The wave amplitudes (a) were estimated as half the height of significant 

waves. A clear dependence on the nonlinear or dispersion parameter is not observed. However, one can 

see that for all wave transformation scenarios, the biphase values vary in the range [–π/2, π/2] for a/h < 

0.3 and they are negative for a/h > 0.3. For a/h > 0.4, when the relative wave height is close to the 

limiting height of breaking waves, the biphase values for scenarios 2 and 4 are close to –π/2 (Fig. 2b). 

For kh <0.5, the biphase values are also negative for all wave transformation scenarios and tend to –π/2 

with a further decrease in kh. One can see that the negative biphase values for scenario 1 are observed 

starting from kh < 0.55, and for scenarios 2–4, starting from а kh less that 0.5, 0.75, and 0.65, 

respectively. For 0.5 < kh < 0.8, the biphase varies in the range [–π/2, π/2]. For kh > 0.8, the range of 

biphase variations narrows to [–π/6, π/6] (Fig. 2c). 

Laboratory Experiment 

To obtain experimental data with other initial wave parameters and bottom slopes necessary for a 

detailed study of the evolution of the biphase in the presence of periodic energy exchange between the 

first and second nonlinear harmonics for wave transformation above an inclined bottom, a laboratory 

experiment was performed in a hydraulic flume of Research center “Sea Coasts” (Sochi, Russia) in July 

2013. The length of flume is 22 m, the width – 0.6 m, the depth – 1 m. Physical modeling was carried 

out on the scale of 1:20 to natural processes. The wave chronograms were recorded synchronously at 14 

points by digital capacity type wire gauges (Fig. 3). The evolution of pseudo monochromatic waves 

above two bottom slopes - 0.022 (gentle) and 0.043(steep) was investigated. Total during the 

experiment 65 wave regimes were tested. The similarity of model and field processes was evidenced by 

equality of the Froude numbers. 
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Figure 3. Bottom profile and positions of wave gauges (x), laboratory experiment, bottom slope 0.043. 

 

The initial water depth near the wave generator in the experiments was 0.55 m for a bottom 

inclination of 0.043 and 0.34 m for an inclination of 0.022. In the experiment, the main focus was to 

obtain wave transformation scenarios with a starkly pronounced periodic energy exchange between the 

nonlinear harmonics (2 and 4) for a wider set of initial wave parameters than in the field experiment for 

an in-depth analysis of the change in the biphase. For all experimental regimes, the initial conditions 

determined at the point of the onset of wave transformation above an underwater slope, just like in the 

field data, corresponded to condition (4). 

In Table 2 are the parameters of laboratory waves used for analysis and scenarios of its 

transformations defined by relations between wave steepness and Iribarren number mentioned above 

and confirmed by spectral analysis of evolution of amplitudes of first and second harmonics. 

 
Table 2. Wave parameters of lab experiment 

No. of 
measurement 
series 

Period
,  
T, s 

Height
, H, m 
 

Steepness
, 
H/L 

Iribarren 
number, ξ 
 

Bottom 
slope, 
α 

Wave 
transformation 
scenario 

6 2.56 0.09 0.0151  0.3494  0.043 1 

7 1.86 0.15 0.0347 0.2307 0.043 2 

8 1.46 0.276 0.0814 0.1507 0.043 2 

9 1.08 0.22 0.0877 0.1452 0.043 4 

10 0.93 0.153 0.0709 0.1615 0.043 4 

11 1.07 0.228 0.0918 0.1419 0.043 2 

12 1.37 0.189 0.0594 0.1764 0.043 4 

13 1.7 0.172 0.0436 0.2060 0.043 2 

15 2.56 0.119 0.0200 0.3039 0.043 1 

17 1.71 0.13 0.0327 0.2376 0.043 2 

18 1.365 0.11 0.0346 0.2312 0.043 2 

19 1.08 0.15 0.0598 0.1758 0.043 2 

20 0.99 0.07 0.0305 0.2464 0.043 3 

48 1.86 0.157 0.0462 0.1023 0.022 2 

49 1.86 0.13 0.0383 0.1124 0.022 2 

50 1.86 0.1 0.0295 0.1282 0.022 2 

51 1.86 0.12 0.0353 0.1170 0.022 2 

53 1.46 0.16 0.0600 0.0898 0.022 4 

54 1.46 0.13 0.0488 0.0996 0.022 2 

55 1.46 0.114 0.0428 0.1064 0.022 2 

56 1 0.12 0.0657 0.0858 0.022 4 

58 2.3 0.15 0.0357 0.1164 0.022 2 
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Figure 4 shows the changes in the biphase for different wave transformation scenarios above a 

steep bottom (0.043) as a function of the Ursell number and the dispersion (kh) and nonlinear (a/h) 

wave parameters. 
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Figure 4. Dependences of biphase on Ursell number (a), kh (b) and ah (c) for different scenarios of wave 

transformations in laboratory experiment Sochi 2013: scenario 1 – blue, scenario 2 – red, scenario 3 – black, 

scenario 4 – green. Solid line Eq.4 with m=0.2, dotted line – with m=0.63.Bottom slope 0.043. 

 

It is visible that the biphase values are poorly described by Eq.4 for all wave transformation 

scenarios. Both positive and negative biphase values are observed for 0.02 < Ur < 0.9. Only for 

scenario 1 for Ur > 1 did the biphase values qualitatively follow Eq.4 with m = 0.63. Variation in the 

biphase for all scenarios hardly depends at all on nonlinear parameter a/h. One can also see that, just 

like in the field experiment data, for a/h > 0.37, when the height of waves is close to their limit height 

of breaking waves, the biphase values are always negative. 

For all the scenarios, a general trend of biphase variation depending on the dispersion parameter kh 

is traced: for kh < 0.6, the biphase is negative and lies in the range from –π/2 to 0. There is no starkly 

pronounced dependence on the type of wave transformation scenario, and one can also see that for 

scenarios 2 and 4, the biphase becomes negative, starting at approximately kh < 0.7 and 0.9, 

respectively. 

For wave transformation above a gently sloping bottom (0.022), the evolution of the biphase occurs 

somewhat differently (Fig.5). Note that for the chosen initial parameters of the experimental waves 

(Table 2), their transformation scenarios 1 and 3 are not observed; more often than not, scenario 2 is 

realized, with one total period of energy exchange between the first and second nonlinear harmonics. 

Figure 5 shows the dependences of the biphase on the Ursell number and the dispersion (kh) and 

nonlinear (a/h) wave parameters for gentle slope (0.022). The biphase values, just like in the case of a 

steep slope, are poorly described by Eq.4. The biphase values can be positive for 0.1 < Ur < 2. Just like 

in the case of wave transformation above a bottom with slope 0.043, variation in the biphase hardly 
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depends at all on nonlinear parameter a/h except for waves close to the limit height of breaking wave, 

for which for a/h > 0.37 the biphase will be negative (Fig. 5b). 
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Figure 5. Dependences of biphase on Ursell number (a), kh (b) and ah (c) for different scenarios of wave 

transformations in laboratory experiment Sochi 2013: scenario 1 – blue, scenario 2 – red, scenario 3 – black, 

scenario 4 – green. Solid line Eq.4 with m=0.2, dotted line – with m=0.63.Bottom slope 0.022. 

 

A certain dependence of the biphase on the dispersion parameter is observed: for kh < 0.35 the 

biphase is negative and lies in the range from –π/2 до 0. In the case of a gently sloping bottom with an 

inclination of 0.022, these biphase values will be observed for a kh less than for wave transformation 

above a steep bottom. For 0.6 <  kh  < 0.4, the biphase, in addition to negative values, has substantial 

positive values, which is related to the periodicity of the energy exchange between the harmonics. For 

kh values close to 1, the biphase is close to zero (Fig. 5c). 

Thus, Eq.4 poorly describes changes in the biphase in the case of wave propagation above an 

inclined bottom for all of the wave transformation scenarios. To correctly parameterize the biphase, it is 

necessary to take into account the periodicity of energy exchange between the harmonics; i.e., the wave 

transformation scenario can play a significant role. For all bottom inclinations, the evolution of the 

biphase depends on kh: we can say that for kh < 0.35, the biphase is negative and ranges from π/2 to 0, 

and for kh > 1, the mean biphase values are close to zero. Independently of bottom slope, the biphase 

for a/h > 0.37 (waves of the limiting height of breaking waves) becomes negative. According to the 

laboratory experiment, no change in the biphase dependent on the nonlinear parameter for a/h < 0.37 

was revealed. The bottom inclination and wave transformation scenario affect the dependence of the 

change in the biphase on dispersion parameter kh. 

Note that in all the studied experimental cases, the change in the biphase occurred in the range from 

–π/2 to π/2 (Figs. 4, 5). An important consequence of such a change in the biphase is that the wave 

component of load dispersion in models based on the Bagnold concept (Bagnold, 1966), which estimate 

sediment discharge using wave velocity asymmetry (e.g., in Antsyferov et al., 2005), will always be 

directed toward the coast, because its value is proportional to the cosine of the biphase. 
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PARAMETERIZATION OF CHANGES IN THE BIPHASE TAKING INTO ACCOUNT PERIODIC 

ENERGY EXCHANGE BETWEEN THE HARMONICS 

Analysis of changes in the biphase in the experimental data has shown that its evolution strictly 

follows changes in the amplitudes of the harmonics, in accordance with the direction of energy 

exchange between them (for example, Fig.6). As was shown in the Introduction, the spatial period of 

energy exchange occurs at distance Lb (2), which increases with decreasing depth, because the value of 

the detuning δ decreases.  

 

 
 

Figure 6. Example of typical changes of biphase and relative amplitudes of first (solid line) and second 

(dashed line) nonlinear harmonics for scenario 2 in field (left) and laboratory (right) experiments. The arrows 

show direction of waves propagation. 

 

Let us consider the evolution of the biphase from a parameter that takes into account the possible 

number of periods of energy exchanges for wave propagating from some local water depth to a shore. 

As such a parameter – relative wave run, we will take the ratio of the distance to the coast (h/α) to the 

expected spatial length of the period of energy exchange between the first and second nonlinear 

harmonics Lb: 

               Δl=(h/α)/Lb,                                                                     (7) 

where h is the local water depth, α is the local mean bottom slope, and Lb is from Eq.2. 

To determine the detuning of the wavenumbers δ= k2 - 2k1, the wavenumbers of the first (k1) and 

second nonlinear harmonics (k2) are calculated by the dispersion relation of linear wave theory. 

Figure 7 shows the changes of the biphase in the experimental data from the proposed parameter 

Δl. One can see that for all analyzed cases, nearly the same change in the biphase occurs: weak 

fluctuations with respect to zero at distances to the coast larger than five exchange periods Lb, then a 

gradual broadening of the range of changes in the biphase to an interval of [–π/2, π/2] at distances to the 

coast within one to three of the proposed exchange periods Lb, and a subsequent narrowing of this 

interval up to changes primarily in the negative domain in the interval [–π/2, 0] at distances to the coast 

on the order of  one Lb. The largest range of possible biphase values in the interval from [–π/2, π/2] will 

be observed for 1< Δl <3. For Δl<0.5, the biphase for all scenarios of the experimental data is strictly 

negative and tends to к –π/2, and an approximation of the upper limit of its changes exists:  

           β = π/2*Δl – π/2                                                                  (8) 
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Figure 7. Dependence of the biphase on relative wave run: scenario 1 – blue, scenario 2 – red, scenario 3 – 

black, scenario 4 – green. Large stars correspond to data of field experiment. 

 

 
 

Figure 8. Dependences of the biphase on relative wave run for different scenarios of wave transformation: 

scenario 1 – blue, scenario 2 – red, scenario 3 – black, scenario 4 – green. Large stars correspond to data of 

field experiment. 
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Thus, using parameter Δl, a nearly general approximation of the biphase values is possible for wave 

propagation above an inclined bottom: for Δl  > 5, the biphase is taken as equal to zero; for Δl < 1, the 

biphase is approximately determined by the change in its upper limiting values by formula (10). For 1< 

Δl <5, a general formula for parameterizing changes in the biphase is impossible.  

When analyzing available experimental lab and field data, we observed a dependence of changes in 

the biphase on parameter Δl and on the wave transformation scenario (Fig. 8). For example, negative 

values of the biphase changes for scenario1 at Δl<0.5 can be approximated by a linear dependence 

Eq.8. But for scenario 2 negative biphases are at Δl < 1, and it can be approximated as 

          β = π*Δl – π/2                                                                       (9) 

For scenario 3, negative changes in the biphase begin for Δl < 4 and they can be approximated as 

                                                                 β = π/9*Δl – π/2                                                                  (10) 

For scenario 4, negative biphases are for Δl < 2.5 and they can be approximated by the dependence 

        β = π/5*Δl – π/2                                                                   (11) 

However, the dependence of variations in the biphase on the transformation scenario and the 

proposed Eq.9-11 require further verification using field measurement data.  

BIPHASE OF BREAKING WAVES 

Wave breaking is a strongly nonlinear process and is characterized by a decrease in wave height. 

As was demonstrated in (Kuznetsov, Saprykina, 2004), during breaking, a strongly pronounced  

frequency selectivity of wave energy dissipation can be observed: breaking changes the wave spectrum, 

compensating the nonlinear increase in the higher harmonics, causing an intense decrease in the 

amplitudes of the second harmonics, which can also affect the change in the biphase. According to the 

most popular concept on wave evolution in the coastal zone, waves before breaking assume a saw-tooth 

shape and the biphase in them is close to –π/2 ( for example, Elgar, Guza, 1985, 1986). But the waves 

breaking by different types, for example, in coastal zone plunging (Pl) and spilling (Sp) breaking types 

more often are realized. Plunging and spilling breaking waves have different symmetry against vertical 

axis: plunging breaking waves are asymmetrical and have a saw-tooth shape, but spilling breaking 

waves are practically symmetrical (Kuznetsov, et al., 2015).  The symmetry of waves against vertical 

axis is defined by asymmetry coefficient 

                                                                     
3

3

H

ů


As                                                                         (12) 

where < > - averaging operator, ηH – Hilbert transform of the free surface elevations, ϭ- standart 

deviation of free surface elevations. 

 
Table 3. Parameters of breaking waves in field experiment 

No. of 
measurement 
series 

Type of 
wave 
breaking 

bottom 
slope 

Period,  
T, s 

γ=Hs/hb 

7 Sp 0.043 2.56 0.60 

8 Sp - 1.46 0.76 

10 Sp - 0.93 0.67 

11 Sp - 1.00 0.68 

12 Pl - 1.36 0.90 

13 Pl - 1.70 0.81 

15 Sp - 2.56 0.57 

17 Sp - 1.70 0.59 

19 Sp - 1.00 0.68 

47 Sp 0.022 2.56 0.64 

48 Sp - 1.86 0.68 

49 Sp - 1.86 0.63 

51 Sp - 1.86 0.59 

52 Sp - 1.86 0.51 

53 Sp - 1.46 0.78 

54 Sp - 1.46 0.70 

55 Sp - 1.46 0.63 

58 Sp - 2.28 0.56 

59 Sp - 2.28 0.63 

61 Sp - 2.28 0.54 
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Table 4. Parameters of breaking waves in laboratory experiment 

No. of 
measurement 
series 

Type of 
wave 
breaking 

Period,  
T, s 

γ=Hs/hb 

42 Pl  6.0  0.97 

41 Pl  7.0  1.02 

41 Pl-Sp  7.0  0.57  

40 Pl  6.5  1.05 

31 Pl  5.0  0.70 

32 Pl  5.0  1.00  

34 Pl  7.0  1.10 

36 Pl  7.0  0.85 

37 Pl  7.0  0.92  

39 Pl  7.0  1.03  

65 Pl  7.0  0.96  

64 Pl  6.5  0.96  

63 Pl  7.0  0.91  

62 Pl  7.0  0.93  

60 Pl  6.0  0.99  

58 Pl  6.0  1.06  

58 Sp  6.0  0.52  

57 Sp-Pl  6.0  0.88  

57 Sp  6.0  0.64  

32 Sp  5.0  0.66  

40 Sp  6.5  0.45  

36 Sp  7.0  0.54  

37 Sp  7.0  0.52  

39 Sp  7.0  0.43  

65 Sp  7.0  0.55  

64 Sp  6.5  0.65  

62 Sp  7.0  0.55  

60 Sp  6.0  0.49  

 

On Fig. 9 the dependence of asymmetry coefficient on biphase for breaking waves are shown. 

Parameters of experimental breaking waves are in Tables 3 and 4. It is well visible that a) asymmetry of 

breaking waves linear depends on biphase and b) biphase of breaking waves changes from [-π/2, π/6] 

and its value depends on type of wave breaking. The biphase of most of spilling breaking waves in 

changes in [–π/3, π/6] and only the biphase of most of plunging breaking waves tends to -–π/2 and 

changes in [-π/2, -π/6]. 

 

 
 

Figure 9. Asymmetry of breaking waves on the biphase. Сircles – data of laboratory experiment, squares – 

field data. Bold symbols – plunging breaking waves, thin symbols – spilling breaking waves. 
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As it was demonstrated in (Saprykina, et al., 2016; Saprykina et al, 2017) breaking index γ – 

relation between wave height and depth of wave breaking – depends on type of wave breaking and 

asymmetry of waves. Therefore the biphase can be usefull to define breaking index and breaking type. 

On Fig. 10 the dependence of breaking index on biphase are shown. The breaking index increases 

with decreasing of biphase in general. But two main tendencies can be observed. For waves breaking 

mainly by spilling type (biphase more then –π/3) the breaking index changes slightly, and for example, 

its value can be accepted to the constant which isn't depending on the biphase. And for waves breaking 

mainly by plunging type (biphase less then –π/3) the breaking index increases with decreasing of the 

biphase. So, if the biphase is known there is possible to define type of breaking and breaking index. 

 

 
 

Figure 10. The breaking index on the biphase. Сircles – data of laboratory experiment, squares – field data. 

Bold symbols – plunging breaking waves, thin symbols – spilling breaking waves. 

 

CONCLUSIONS 

1. In nonlinear dispersive waves, a change in the biphase strictly follows changes in the amplitudes 

of the first and second harmonics and the periodicity of energy exchange between them. Here, the 

biphase varies in the interval [–π/2, π/2]. 

2. Eq.4, widely applied in practice, of the dependence of the biphase on the Ursell number is 

unsuitable for correctly calculating the biphase during wave propagation over an sloping bottom in the 

coastal zone, because it does not take into account periodic energy exchange between the nonlinear 

harmonics during near resonant triad interactions. As another approach, a simple linear approximation 

of the biphase from relative wave run Δl (the ratio of the current distance to the coast to the possible 

length of spatial period of the energy exchange) is suggested. For Δl < 1, the biphase is approximately 

equal to π/2*Δl –π/2, and for Δl > 5, the biphase is equal to zero. For 1< Δl < 5, the biphase can be 

unambiguously parameterized. 

3. From the available experimental data, a dependence of biphase measurements on the wave 

transformation scenario and the possibility of constructing the parameterization of the biphase from Δl 

for each of the scenarios are observed. However, the observed regularities require additional 

experimental verification. 

4. The biphase of breaking waves defines breaking index and breaking type.  

Our research and the obtained parameterizations of the biphase can be used for modeling the sea 

state in the coastal zone and in problems on predicting the development of coasts under the impact of 

storm waves. 
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