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SPECTRAL PARTITIONING AND SWELLS IN THE BLACK SEA 

Gerbrant Ph. Van Vledder12 and Adem Akpinar3  

The swell climate of the Black Sea has been determined using a long-term 31-year wave hindcast with the third-

generation spectral wave model SWAN in combination with spectral partitioning. This technique enables decomposing 

wave spectra into individual wave systems representing wind seas or swells and computing integral wave parameters of 

each partition. Results are presented of the partition technique and of spatial and seasonal characteristics of wind sea 

and swell systems. In addition, the average amount of swell energy and the occurrence probability of dangerous 

crossing sea states are determined.  
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INTRODUCTION 

Low-frequency wind generated swell waves have a special place in offshore and coastal engineering 

as they occur independent of the local wind. These waves can be particularly dangerous as they may 

have relatively large periods in combination with small heights in contrast to storm waves where heights 

and periods are strongly coupled due to the physical effects of non-linear four-wave interactions (cf. 

Hasselmann et al. (1973) and Young and Van Vledder (1993). Therefore, information on their 

occurrence probabilities is important to estimate down-time of ports, the optimal design of wave energy 

convertors and ship motions in cross seas. Although the Black Sea is limited in size, it is still large 

enough to generate swell waves in storm systems, which then radiate to other sides of this sea. To 

properly cope with these waves, reliable information on their statistical properties is important for many 

offshore and coastal engineering applications, both in terms of their heights as well as their periods.  

The first major study investigating the swell climate in the Black Sea was performed by Berkün 

(2007). He analyzed wave model output of the ECMWF WAM model implementation for the Black 

Sea. This study, however, was limited to analyzing wave parameters of significant wave height, peak 

period and mean wave direction for the wind sea and one swell component at 10 locations along an east-

west transect in the Black Sea covering a period of 65 months (about 5.5 years). The ECWMF model 

applied, used a wind based criterion to split a modelled frequency-direction wave spectrum in a wind sea 

part and a swell part. The wind sea part of this spectrum was defined as that part of the wave spectrum 

lying in the influence zone of the wind using a wave age criterion: 

 

  *1.2 28 cosp wc u                                                                                                       (1)   

 

 in which cp is the phase velocity of a wave component, u* is the friction velocity, w is the wind 

direction and  is the direction of a wave component. This equation traces out a parabolic boundary in 

the frequency-direction space of a wave spectrum. 

Spectral shapes were analyzed by Yilmaz (2007) using buoy data collected intermittently over 101 

months in the period from 1994-2003 at the buoy locations of Sinop, Gelendzhik and Hopa. Of 

particular interest are her estimates of percentages of sufficiently well-resolved multi-peaked frequency 

spectra, each having a minimum total significant wave height of 0.5 m. A limitation of her study was that 

only frequency spectra were considered, and that no distinction was made between wind seas and swell 

waves. These initial works of Berkün (2007) and Yilmaz (2007) were a good step towards a more 

elaborate statistical description of the swell climate.  

In this study these analyses were extended by determining the swell climate in the entire Black Sea, 

by using a longer simulation period and by using a more advanced method to partition the wave 

spectrum into a wind sea partition and one or more swell partitions. For the partitioning the spectral 

partitioning technique recently implemented in the SWAN wave model was applied. This approach 

enabled a more detailed splitting of a wave spectrum into its constituting components, not limited to one 

swell partition. Another advantage is that our analysis is not confined to a limited number of output 
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locations, but also that the spatial distribution of the swell climate in the Black Sea and Sea of Azov can 

be determined. This facilitated examining patterns of swell propagation over the entire Black Sea.  

SPECTRAL PARTITIONING 

A new feature of SWAN, first added to version 41.10, is spectral partitioning as part of internal 

post-processing. This technique identifies areas in the frequency-direction spectrum each associated to a 

local spectral peak. The splitting technique is based on the inverse watershed algorithm as described in 

Hanson and Phillips (2001) and Portilla et al. (2009). The first step in this method is to find the spectral 

bins in frequency-direction space that are linked to a local peak by following a line of steepest ascent. 

The second step is to find the spectral peak(s) associated to the local wind, while all other possible 

peaks are considered to belong to one or more swell partitions. The criterion to assign one or more 

peaks as wind seas is described in Hanson and Phillips (2001) and contrary to Eq. (1), formulated in 

terms of wind speed U10: 

  

  10 cosp wind wc C U                                                                                                      (2)  

 

where U10 is the wind speed at a height of 10 m. Hanson and Phillips (2001) argue that the relative 

large factor Cwind=1.5 is chosen to ensure that all possible wind sea peaks are included.  In case of a 

single peaked spectrum the wave-age criterion will assign it to be either a wind sea peak of a swell peak. 

An interesting application of this splitting technique in identifying climatology of families of wave 

systems can be found in Portilla et al. (2015). In SWAN a more generous value of Cwind=1.7 is used.  

Figure 1 shows an example of the partitioning of a 2D-frequency-direction wave spectrum. Each 

panel shows a polar plot of the normalized wave spectrum. The solid line indicates the area of influence 

of wind according to Eq. (2) with Cwind=1.7. As can be seen, this line intersects different partitions. In 

contrast to the ECWMF procedure outlined above, all whole partitions whose peaks lie in the area of 

influence are considered as the wind sea partition. All other significant partitions are considered as swell 

partitions, even if parts of them are under the influence of wind. Hereafter, for each partition a number 

of spectral parameters are computed including a parameter WFRAC indicating the relative area of a 2D-

wave spectrum lying within the influence of the wind according to Eq. (2). Usually, this parameter is the 

greatest for the wind sea partition. 

 

 
 

Figure 1. Normalized polar spectra of full spectrum (upper left panel), wind sea partition (upper right panel), 

primary swell partition (lower left panel) and secondary partition (lower right panel) for 27 Oct, 1996, 12:00 

hours at =40° and =43°. The black line indicates the wave-age criterion Eq. (2). 
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It is noted that the basic routines for the partitioning of wave spectra and the computation of their 

properties are the same as those implemented in the WaveWatch III model. This shared feature is 

beneficial when processing output from both models. Spectral partitioning in SWAN is activated with 

sub-commands starting with the letter combination PT in the main commands for generating Table and 

Block output. An example of SWAN input lines for generating output (here non-stationary) of all 

possible integral parameters of each partition is as follows:  

 

TABLE 'swell' HEADER 'table\BS_PARTIT_201702.tab' TSEC Time XP YP  & 

   PTHSIG PTRTP PTWFRAC PTDIR PTDSPR PTWLEN PTSTEEP & 

   OUTPUT 19960201:000000 1.0 hr 

 

BLOCK 'COMPGRID'  NOHEAD 'block\bs_201702.mat' LAY 3 XP YP  & 

    PTHSIG PTRTP PTWFRAC PTDIR PTDSPR PTWLEN PTSTEEP & 

    OUTPUT 19960201:000000 3 hr 

 

BLOCK 'COMPGRID'  NOHEAD 'block\bs_par_201702.RAW' LAY 3 XP YP PARTIT & 

  OUTPUT 19960201:000000 3 hr 

 

 in which PTHSIG, PTRTP, PTWFRAC, PTDIR, PTDSPR, PTWLEN and PTSTEEP represent for 

each partition the significant wave height, relative peak period, fraction of spectral area actively driven 

by wind, mean wave direction, directional spreading, mean wave length and mean wave steepness. 

Partitions of which their peak value is not in area of influence of the wind, are treated as a swell 

partition, even if an area of this partition, as expressed by the value of the parameter PTWRAC, is under 

the influence of the wind.  

 By default, results of 10 partitions are output, even if a wave spectrum has only one partition. In 

case less than 10 partitions are identified, the parameter values for non-existing peaks are filled with 

zeros.  The first numbered partition PT01 is always the wind sea one, even for the case that no wind sea 

is present. The swell partitions PT02 to PT10 are sorted with decreasing significant wave height.  

The third command containing the keywords ‘RAW’ and PARTIT generates a so-called ‘raw’ table 

with information on each non-empty partition for all grid points and time steps containing parameter 

values of wind, significant wave height, peak period, mean wave direction and directional spreading. 

This output was defined to enable tracking in space and time of evolving wave systems (see the 

Wavewatch manual, 2009, and Devaliere et al., 2007). Details on the file format and meaning of 

different parameters can be found in http://polar.ncep.noaa.gov/waves/workshop/pdfs/ 

WW3-workshop-exercises-day4-wavetracking.pdf. 

Spectral partitioning may increase run time depending on the extent of output requests. It is noted 

that no output is generated of the partitioning itself, e.g. in the form of a 2D-matrix filled with integers 

indicating the partition number of each spectral frequency-direction bin. Further details of using spectral 

partitioning can be found in the SWAN manual (SWAN team, 2016). 

MODEL SETUP 

To study the swell climate in the Black Sea the SWAN model (Booij et al., 1999) was applied in 

non-stationary mode to simulate 31 years starting on Jan. 1, 1979 till Dec. 31, 2009. In our non-

stationary simulations we applied the same model set-up as used in Van Vledder and Akpinar (2015). 

This included a spatial grid 225 by 120 grid cells in the longitude range 27°E- 42°E and latitude range 

40°N to 48°N, with a step size of =1/15° and =1/15°. The spectral resolution consisted of 36 

directions equally spaced with a 10° step and 43 frequencies logarithmically distributed in the range 0.03 

Hz – 1.5 Hz, such that each frequency is 10% higher than the previous frequency. The relatively high 

upper frequency was chosen to improve accuracy for low wind speeds.  

The time step of the non-stationary computations was 15 minutes with one 1 iteration per time step 

as recommended by Akpinar et al. (2012). Following Akpinar et al. (2012) and Van Vledder and 

Akpinar (2015), hourly CFSR wind fields were used to drive the SWAN wave model.  

The physical settings are based on the default settings of the third-generation wave physics 

according to Komen et al. (1984, 1994). Linear wave growth is based on Cavaleri and Malanotte-

Rizzoli (1981), and exponential wind input is based on Snyder et al. (1981) as rescaled by Komen et al. 

(1984). Whitecapping dissipation is based on Komen et al. (1994) using DELTA=1 as recommended by 
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Rogers et al. (2003). The non-linear interactions are estimated using the Discrete Interaction 

Approximation (DIA) of Hasselmann et al. (1985) using =0.25 and Cnl4=3x10
7
. Bottom friction is 

according to the JONSWAP formulation of Hasselmann et al. (1973) with Cf,JON=0.038 m
2
s

-3
. Triad 

interactions were not activated.  

Table output was generated every hour at 214 locations regularly spaced at a grid of 0.5° by 0.5°, 

whereas block output at all computational points was generated every 3 hours. For illustration purposes 

three output points were selected, one in the western part, the middle part and the eastern part of the 

Black Sea. The positions of all output locations and the selected output points are shown in Figure 2.  

 

 
 

Figure 2. Outline of the Black Sea and positions of selected output locations (red dots) circles. 

 

 

RESULTS 

An example of spectral partitioning is shown in Figure 3 in the form of time series of wind speed 

U10 (upper panel), the total and partitioned significant wave heights of the wind partition and the 

primary and secondary swell partition (top second panel), associated peak periods (top third panel) and 

the corresponding directions, including wind (bottom panel).  

As can be seen the total significant wave height (black line) is usually composed of only a wind sea 

(blue line) and where the significant wave height is strongly coupled with the local wind speed. Quite 

often a significant primary swell (red lines) occurs sometimes supplemented with secondary swell (green 

lines). The associated peak periods of the wind sea are strongly related to their significant wave height 

indicating actively driven wave field. As expected the swell periods usually exceed the wind sea peak 

period. The mean directions (lower panel) show the wind sea direction follows the wind directions with 

some expected delay (cf. Van Vledder and Holthuijsen, 1993). 
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Figure 3. Time series of wind speed U10 (upper panel), significant wave heights (top second panel), peak 

periods (top third panel) and wind and mean wave directions (bottom panel) for output location P95 and the 

month of February in 1996.  

 

An example of non-partitioned and partitioned wave fields is shown in the Figures 4 and 5 for the 

significant wave height Hm0 and peak period Tp, respectively for 27 October, 1996, 12:00 hours. It is 

noted that this moment of time is associated to the storm event analyzed in Van Vledder and Akpinar 

(2015). The upper left panel in Figure 4 shows the spatial variation of the total significant wave height 

(Hsig), the upper right panel shows the wind sea partition (HSPT01), the lower left panel shows the 

primary swell partition (HSPT02), and the lower right panel shows the spatial variation of the secondary 

swell partition (HSPT03). Figure 5 shows the associated peak periods for the same moment of time. The 

arrows in these two figures show the mean wave direction scaled with the related significant wave 

height.  

The results in these figures clearly illustrate the power of spectral partitioning showing the existence 

of a strong wind sea storm system in the southeastern part of the Black Sea and a swell system moving 

to the south-west in the southwestern part of the Black Sea. In addition, a small secondary swell system 

exists in the wake of the storm system. The significant wave height peaks in the storm with heights up to 

7 meters and peak periods up to 10 seconds. The swell heights are about 1.8 m with peak periods up to 

10 seconds. A remarkable feature is that the peak periods of the western primary swell systems are 

highest along their northern regions (about 45°N). The northeastern primary swell system is trailing 

behind the moving storm system. The origin of this swell system is due to the drop in the wind speed 

such that these waves are not any longer under the influence of the local wind, which by definition 

makes these waves swell.  

The secondary swell system in the northeastern area near the Russian town of Gelendzhik is a small 

system having the same origin as the nearby primary swell system but having a spectral peak sufficiently 

separated from the wind sea and primary swell peaks. In case these peaks are close in spectral space, 

one may combine these peaks into one swell peak. In fact such merging of peaks is discussed in Hanson 

and Phillips (2001) and Portilla et al. (2009) to retain only significant peaks.  
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Figure 4. Spatial variation of the total significant wave height (upper left panel), wind sea partition (upper right 

panel), primary swell partition (lower left panel) and secondary swell partition (lower right panel) for 27 

October, 1996, 12:00 hours. The arrows indicate the mean wave direction of each partition scaled with the 

associated significant wave height. 

 

 
Figure 5. Spatial variation of the overall peak period (upper left panel), wind sea partition (upper right panel), 

primary swell partition (lower left panel) and secondary swell partition (lower right panel) for 27 October, 1996, 

12:00 hours. The arrows indicate the mean wave direction of each partition scaled with the associated 

significant wave height. 
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CLIMATE RESULTS 

The previous figures showed the ability of spectral partitioning tool in decomposing the wave field 

in its constituting components. From an application point of view it is interesting to know how much 

wave energy in the Black Sea can be attributed to swell. This is illustrated in Figure 6 showing the 

average seasonal contribution of swell energy to the total wave energy computed as: 
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where i loops over all time steps at a certain location.  

 

In the present analysis seasons are defined as three-month periods with winter containing the 

months December, January and February; spring containing the months March, April and May; summer 

containing the months June, July and August and autumn containing the months September, October 

and November.  

The results show that the Sea of Azov has the lowest amount of swell energy. This is not surprising 

as wave systems are generally smaller in spatial extent than the wind systems generating waves. In the 

Black Sea basin, the highest amount of swell energy occurs in the winter season just east of the middle 

of this sea. It is surprising that a high percentage of swell energy also occurs in the summer season along 

the northeastern Russian coast. For the spring season no particular area can be identified where the 

contribution of swell energy strongly deviates from the overall mean in the Black Sea. For the summer 

season it is found that the relatively swell rich areas occur in the western and eastern part of the Black 

Sea. The autumn season shows relatively large contributions of swell energy in the northwestern areas 

and also in the same area where much swell energy occurs in the winter season.  

 
Figure 6. Spatial variation of percentage of swell energy in the Black Sea per season based on hindcast results 

from 1979-2009.  

 

 

The next step in our analysis is to assess the maximum wind sea and swell conditions that occur in 

the Black Sea. To that end the maximum significant wave height Hm0 and peak period Tp that occurred 

in the Black Sea in the period 1979-2009 were determined for all grid points. The Figures 7 and 8 show 

the maximum significant wave heights for wind sea and swell, respectively. The subplots show the 

spatial distribution per season. The Figures 9 and 10 shows the associated distributions of peak periods. 
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In line with previous findings (Akpinar et al., 2016) the highest wind sea conditions are found in the 

southwestern and southeastern part of the Black Sea with winter being the most severe season and 

summer the calmest. A similar pattern is found for the maximum swell height, but with a few marked 

differences. The spatial distribution is less smooth than the wind sea and it is spread over a wider area as 

propagate as swell waves over the Black Sea independent of the local wind. Concerning the spatial 

distribution of the maximum peak periods, less marked differences are found between wind seas and 

swell systems. Still, a patch of relatively high swell peak periods is found in autumn in the southeastern 

part of the Black Sea. This comparison shows that swells in the Black Sea are strongly coupled to the 

wind seas in which they originate. Two mechanisms play a role in the origin of swell waves. Firstly, as a 

storm system moves over the Black Sea it leaves an area with lower wind speeds in its ‘wake’, which is 

then considered as swell in our definition (Eq. 2). In addition, such moving systems commonly have 

turning winds often leading to a decoupling of the old wave system becoming swell and a newly 

developed wind sea (Van Vledder and Holthuijsen, 1993). Secondly, as swell waves travel faster than 

the local wind speeds, they escape the storm area. Both mechanisms lead to swell waves that may 

propagate over the entire Black Sea giving a local surfer or sailor a signal from a distant storm.  

 

The simultaneous occurrence of wind seas and swell can be dangerous for ships crossing the Black 

Sea. The spectral partitioning method was used to determine the occurrence probability of multi-peaked 

wave systems. To arrive at statistical meaningful results a ‘dangerous’ sea state was defined as having at 

least a wind sea peak, at least one swell peak both having a significant wave height of at least 0.25 m 

and propagation directions deviating more than 90°. The result of this analysis is shown in Figure 11 for 

each season. The highest probability of occurrence of such multi-peaked wave systems occurs in winter 

the lowest in summer. The occurrence probabilities have lower values along the coast lines, which 

indicates that such sea states need larger fetches to develop. The Sea of Azov shows the least amount of 

multi-peaked wave spectra, indicating that it is limited in a physical sense to develop multi-peaked wave 

spectra. A comparison with results from Yilmaz (2007) is difficult to make due to differences in the 

method to detect multi-peaked spectra. Despite these differences an estimate is made using the 

percentage of multi-peaked spectra for location Hopa collected intermittently in 41 months in the years 

1994-1999, using the criterion that the significant wave height of the wind sea peak (HSPT01) and 

primary swell peak (HSPT02) both exceed 0.25 m and that their directions differ at least 90°, yielding 

the percentages 10%, 8%, 5% and 5% for winter, spring, summer and autumn, respectively. These 

numbers are much smaller than those of Yilmaz (2007), viz. 27%, 28%, 25% and 22%, probably due the 

additional directional difference criterion and the intermittency of the observations.  

 

A detailed look at the partitioned wave climate is by inspection of the wind and wave roses. Figures 

12 to 14 show the wind and wave roses for the three output locations (L10, L95 and L205) as shown in 

Figure 2. The upper left rose is the local wind rose derived from the CFSR wind data. The upper right 

rose shows the wave rose of the total wave condition based on the overall significant wave height. The 

lower roses show the wind sea wave height and all swell wave heights (i.e. multiple swell heights higher 

than 0.05 m occurring at the same moment of time are included in the statistics). The roses show 

interesting relations between local wind, local wind sea and distantly generated swell waves.  

For location L10 in the western part of the Black Sea strong similarities between the wind, total 

wave and wind sea roses occur, especially for the north-eastern sector. Differences in the distribution are 

due to upwind fetch-restrictions, e.g. for waves originating south of this location. The swell is mainly 

coming from easterly directions, indicating they were generated in the middle and even eastern part of 

the Black Sea. 

For location L95, in the middle part of the Black Sea, the wind rose shows more or less an evenly 

distribution over the western, northern and easterly sectors. This is not reflected in the wave roses, 

which show a gap for northerly directions due to the proximity of land in the North restricting fetch 

lengths. The swell rose is dominated by strong contributions from the northwest and the east. It is also 

notable that the contribution of relatively higher swell waves is smaller than those of the wind sea 

components. This suggests that this part of the Black Sea is not a primary region for the generation of 

swell waves. 

For location L205, in the eastern part of the Black Sea, the wind rose shows a strong bi-modal 

distribution, which is partly reflected in the total wave and wind sea roses. The swell rose strongly 

deviates from the wind rose, with a strong contribution from northwesterly directions and hardly any 

contribution from southerly and southeasterly directions.  
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Figure 7. Spatial variation of the maximum significant wave height of wind seas per season based on hindcast 

results from 1979-2009.  

 

 
Figure 8. Spatial variation of the maximum significant wave height of swell waves per season based on 

hindcast results from 1979-2009.  
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Figure 9. Spatial variation of the maximum peak period of wind seas per season based on hindcast results 

from 1979-2009.  

 

 
 

Figure 10. Spatial variation of the maximum peak period of swell waves per season based on hindcast results 

from 1979-2009.  
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Figure 11. Spatial variation of the seasonal percentage of occurrence of dangerous cross seas based on 

SWAN hindcast results from 1979-2009.  

 

 

 
 

Figure 12. Annual roses for wind speed (upper left panel), total wave height (upper right panel), wind sea wave 

height (lower left panel) and swell wave height (lower right panel) for location 10 in the western part of the 

Black Sea based on SWAN hindcast results from 1979-2009.  
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Figure 13. Annual roses for wind speed (upper left panel), total wave height (upper right panel), wind sea wave 

height (lower left panel) and swell wave height (lower right panel) for location 95 in the middle of the Black Sea 

based on SWAN hindcast results from 1979-2009.  

 

 
 

Figure 14. Annual roses for wind speed (upper left panel), total wave height (upper right panel), wind sea wave 

height (lower left panel) and swell wave height (lower right panel) for location 10 in the eastern part of the 

Black Sea based on SWAN hindcast results from 1979-2009.  
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DISCUSSION 

In this study an analysis was performed on the swell climate in the Black Sea. Key to this analysis is 

the definition of swell and the method to extract this information from 2D-wave spectra. From a physical 

point of view swell waves are usually considered as those waves that propagate independent of the 

wind, i.e. their phase velocity is higher than the local wind component in the direction of wave 

propagation. This definition, however, neglects the fact that individual swell wave components are part 

of a wave system containing many wave components affecting each other through e.g. non-linear wave-

wave interaction and dissipation, even when some components are still under the influence of the wind. 

A clear exception to this picture are regular ocean swells having travelled thousands of kilometers and 

showing a high amount of regularity. To identify individual wave systems the spectral partitioning 

technique is used under the assumption that each (significant) local peak and associated partition in the 

2D-wave spectrum represents an individual wave system. Wind sea systems are those systems whose 

peak is under the influence of wind according to the wave age criterion. This implies that such a wave 

system may contain components that are not under the influence of the local wind, and conversely, swell 

system may contain components that are under the influence of the local wind. In the present method, 

the fraction of spectral area under the influence of the wind is expressed by the parameter WFRAC. This 

way of assigning swell waves deviates from the ECMWF method as used by Berkün (2007) where only 

the influence zone of wind is used as a criterion. It is noted that since 2007 the ECMWF wave products 

have changed significantly, see ECMWF (2015) for the most recent guide.  

The spectral partitioning technique shows that even in a closed basin as the Black Sea multi-peaked 

wave spectra can occur composed a wind sea and one or more swell systems, whereas in the Sea of 

Azov significantly less multi-peaked wave spectra occurs. This difference is related to the size of the 

generating storm and the spatial extent of the wave basin. The larger the wave basin, the higher the 

probability of occurrence of swells. An important characteristic of the present spectral partitioning 

method is its ability to identify wave systems coming from different directions, which can be considered 

as an extension to the work of Yilmaz (2007). The present analysis also shows that swells can cross the 

entire Black Sea from its generation area in e.g. the eastern part to the other side in the West. In 

contrast to ocean scale basins, the effect of wave dispersion leading to relatively large swell period is 

limited here. Maximum swell wave periods are only slightly higher than those found in active storm 

areas. 

The present study can be considered as an extension of the work by Berkün (2007). A qualitative 

comparison of the wind and wave roses shows many similarities, but also some differences. Similarities 

are mainly visible for the locations L10 and L205 and the nearest points used by Berkün (2007), in 

which dominant swell directions are both related to relatively large upwind fetches. Differences are 

probably due to differences in the method of swell identification, the physical and numerical settings in 

the wave models (ECWAM versus SWAN), and the length of the hindcast period. Further analysis are 

recommended to detail similarities and differences. 

CONCLUSIONS 

This paper shows a first application of the spectral partitioning tool in the SWAN wave model. This 

tool was applied to study some aspects the swell climate in the Black Sea based on hindcast results 

covering a period of 31 years. The results of this study lead to the following conclusions: 

  Swells are common in Black Sea; 

 The amount of swell energy is significant and can be up to 50%, especially after the passage 

of a storm system; 

  The spatial extent of the Black Sea is large enough for pure swells to exist (i.e. WFRAC very 

low);  

 The highest swell wave height occurs in the winter season and in the southwestern and 

southeastern parts of the Black Sea. The lowest swell wave heights occur in the summer 

season; 

  Dangerous sea states consisting of significant crossing wave systems mainly occur in the 

winter season; 

  The maximum swell periods are slightly larger than the maximum wind sea peak periods; 

 The directions from which swell waves are coming is strongly affect by upwind fetch 

restrictions. 

 The results from this analysis are similar to those of Berkün (2007).  
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The present study only showed limited information on the swell conditions in the Black Sea. More 

elaborate analyses will include a wider spatial coverage, a more detailed seasonal analysis and an 

extreme value analysis to investigate whether a maximum to swell heights exists.  
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