
Wave-Structure
interaction

Umberto Bosi

Introduction

Depth averaged
Models

Spectral element
method

Results

Conclusion

Appendix

An efficient unified spectral element
Boussinesq model for a point absorber

Umberto Bosi
INRIA, Bordeaux

ICCE2018

coauthor: Allan Peter Engsig-Karup (DTU)
Claes Eskilsson (Aalborg University - RISE)
Mario Ricchiuto (INRIA)

03 August 2018

1 / 20



Wave-Structure
interaction

Umberto Bosi

Introduction

Depth averaged
Models

Spectral element
method

Results

Conclusion

Appendix

Wave energy converter

A point absorber is a
floating structure which
absorbs energy from all
directions through its
movements at/near the
water surface. The typical
diameter of point absorber
is much smaller of the
length of the waves in
which it operates.
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Why a depth averaged model?
Linear model

Efficient and fast computation, not accurate in describing
the high order nonlinear effects.
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Why a depth averaged model?
Linear model

Resonance peak presents and much higher than CFD
simulation
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Why a depth averaged model?
Reynolds averaged Navier Stokes model

RANS: high fidelity model but computationally impractical.
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Why a depth averaged model?
Third Way

Depth averaged models
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Depth averaged models

I Standard approach for nearly 20 years in the coastal
engineering community

I Already used to model structure
I Application with floating bodies:

I Jiang, T. Ship waves in shallow water, (2001).
I Lannes, D. On the dynamics of floating structures,

(2017).
I Godlewski, Edwige, et al. Congested shallow water

model: roof modelling in free surface flow, (2018).
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Depth averaged models
NSW

The model approximate the irrotational Euler equation at
the second order of nonlinearity:

µ = κh

µ2 � 1

where κ is the wavenumber and h is the still water depth.
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Depth averaged models
NSW

In one dimension, as first approximation, we have the
nonlinear shallow water (NSW) equation{

dt + qx = 0

qt +
(
q2

d

)
x

+ dPx = 0

in conservative variables: d is the wave elevation, q is flow
field and P = Phy = gd the hydrostatic pressure.
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Depth averaged models
Madsen and Sørensen

Dispersion effects of order µ2 can be added.
Weakly nonlinear correction: if ε = A

h ≈ µ
2 with A the wave

amplitude, we have for example the MS model:

qt − h2βqxxt +

(
q2

d

)
x

+ dPx − αMSh
2dPxxx = 0

The free parameters are be tuned to enhance the dispersion.
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Depth averaged models
Domain setup
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Depth averaged models
Inner Domain

Under the WEC, the motion is
described by a NSW model{

dt + qx = 0

qt +
(
q2

d

)
x

+ dPx = 0

where d is the elevation of the body
and P = Π + gd the pressure field
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Depth averaged models
Inner Domain

Under the WEC, the motion is
described by a NSW model{

dt + qx = 0

qt +
(
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x

+ dP x = 0

where d is the elevation of the body
and P = Π + gd the pressure field
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Depth averaged models
Pressure field

From the body mass equation
we have

qx = −dt
qxt = −dtt = −a

a acceleration of the body

The acceleration can be evaluated from the balance of the
forces F applied to the body

mba = −mbg + F = −mbg + ρw

∫
Ωb

(P − gd)∂S
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Depth averaged models

The Inner pressure field can
be evaluated taking the
divergence of momentum
equation

∂x

[
dPx = qt +

(
q2

d

)
x

]
− (dPx)x = −a+

(
q2

d

)
xx
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Depth averaged models
Final system

From the definition of the hydrostatic pressure, in the outer
(free surface) domain we solve

Pt + gqx = 0

qt +

(
q2

d

)
x

+ dPx = Φdisp

Φdisp := h2βqxxt + αMSh
2dPxxx

and in the inner (under the body) domain

− (dPx)x = −a+

(
q2

d

)
xx

qt +

(
q2

d

)
x

+ dPx = 0

qxt = −a, P = Π + gd
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Spectral/hp Element method

I Higher (≥ 3) order convergence; more efficient for very
long time integration

I potential h- and p-adaptivity
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Spectral Element method
Discretization

The consistency of the system is kept at discrete leved
adopting a first order derivative formulation. For the inner
domain, it means

−(dPx)x = −a+
(
q2

d

)
xx

qt +
(
q2

d

)
x

+ dPx = 0

qxt = −a
P = Π + gd

⇒


−(db)x = −a+ lx
qt + l + b = 0
qxt = −a
P = Π + gd

Defining:{
b := Px

l := (q2/d)x
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Spectral Element method
Discretization

Consider b = Px:

I Evaluate the variational form

I Double integrate by part∫
Ω
ϕbdx =

∫
Ω
ϕPxdx+

∫
∂Ω
ϕ(P̂ − P )n̂dx

I Discretize the variables

We need only a derivative matrix operator and a projection
matrix to solve the equation.
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Spectral Element method
Discretization

At discrete level

Mb = DP + C
(
P̂ − P

)
Depending on the penalty terms, we can collect the matrices
as Q = D + C
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Spectral Element method
Discretization

At discrete level

Mb = DP + C
(
P̂ − P

)
Depending on the penalty terms, we can collect the matrices
as Q = D + C

REMARK

I The precision of the model depends on the
choice of D and the basis function ϕ

I The stability depends on the choice of the
penalty terms
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Spectral Element method
Discretization

Combining the first derivative matrices, the discrete inner
domain system becomes

Qqt = −Ma
Mqt + Q(q2/d) + DdQP = 0
−QM−1DdQP = −Qa+ QM−1DdQ(q2/d)

and the outer domain system{
Mdt + Qq = 0
Mqt + Q(q2/d) + DdQP = Φdisp
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Convergence
Wave propagation and manufactured solution

The first tests were done propagating a wave through
different domains and check the convergence using a
manufactured solutions:

d(x, t) = f1(x− ct), q(x, t) = f2(x− ct)
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Convergence
Wave-fixed box convergence

Second we tested the convergence of the model with a fixed
box in the center. Using a manufactured solution:

Depth
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Wave - Pontoon Coupling
Fixed Box - Benchmark

We reproduced the
benchmark in Rodriguez
and Spinneken (2016) of a
fixed pontoon interacting
with a solitary wave.

Solution at t = 0.0
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Wave - Pontoon Coupling
Fixed Box - Benchmark

We reproduced the
benchmark in Rodriguez
and Spinneken (2016) of a
fixed pontoon interacting
with a solitary wave.
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Forced and Decay test
Forced motion test

The forced motion reproduced the solution of D. Lannes
(2016). The figure shows the evolution of the wetting point
for the forced motion test and the exact solution.
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Forced and Decay test
Forced motion test

The forced motion reproduced the solution of D. Lannes
(2016). The figure shows the evolution of the wetting point
for the forced motion test and the exact solution.
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Forced and Decay test
Decay test

The decay test reproduced the numerical solution of D.
Lannes (2017). The figure shows the evolution of the center
of gravity for the decay test and the numerical solution.
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Forced and Decay test
Decay test

The decay test reproduced the numerical solution of D.
Lannes (2017). The figure shows the evolution of the center
of gravity for the decay test and the numerical solution.
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Heaving Body
Single Body

The free heaving motion is tested with a rectangular box
interacting with waves of different steepness and period.
The Response amplitude operator (RAO) of the Boussinesq
case is tested against a linear code and a CFD one.
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Heaving Body
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Ongoing work
Multiple Bodies

Our routine permits us to simulate easily multiple bodies:

5 6 7 8 9 10 11

T [s]

1

1.2

1.4

1.6

1.8

2

RAO of multiple bodies, distance = 2 ,  = 0.025

MS+NSW
HH B

1

HP B
1

HH B
2

PH B
2

The RAO is evaluated for both bodies in case are both
heaving boxes (HH in the legend) or one of them is a
pontoon (HP or PH).
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Ongoing work
Latching

Control technique to improve body response.
The body is held still (latched) in some time windows to
amplify the oscillations once released.

The velocity of the body is set to zero for a time TL once
the body reaches its peak and then is freed to continue the
movement.
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Ongoing work
Latching

Latching test with a box interacting with a wave of period
T = 8s and steepness σ = 0.025
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Follow up

I Improved penalty terms and numerical stabilization

I Case test with latching and PTO

I 2D/3D model
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Acceleration

Discrete acceleration equation

mba = −mbg + ρww
T (P − gd)

where w are the Gauss-Lobatto-Legendre weights.
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Acceleration

Substituting the expression of the pressure the acceleration
can be evaluated as

(mb +Madd) a = −mbg

−wT
((

QM−1DdQ
)−1

(QM−1Q)(q2/d) + gMd
)

where we have defined the added mass Madd

Madd = −wT
(
QM−1DdQ

)−1
w.

It can be shown that Madd ≥ 0 provided that QM−1DdQ
is invertible.
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