

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

The State of the Art and Science of Coastal Engineering

Effects of Desalination on Hydrodynamic Process in Persian Gulf

Wonhyun Lee, Ph.D student

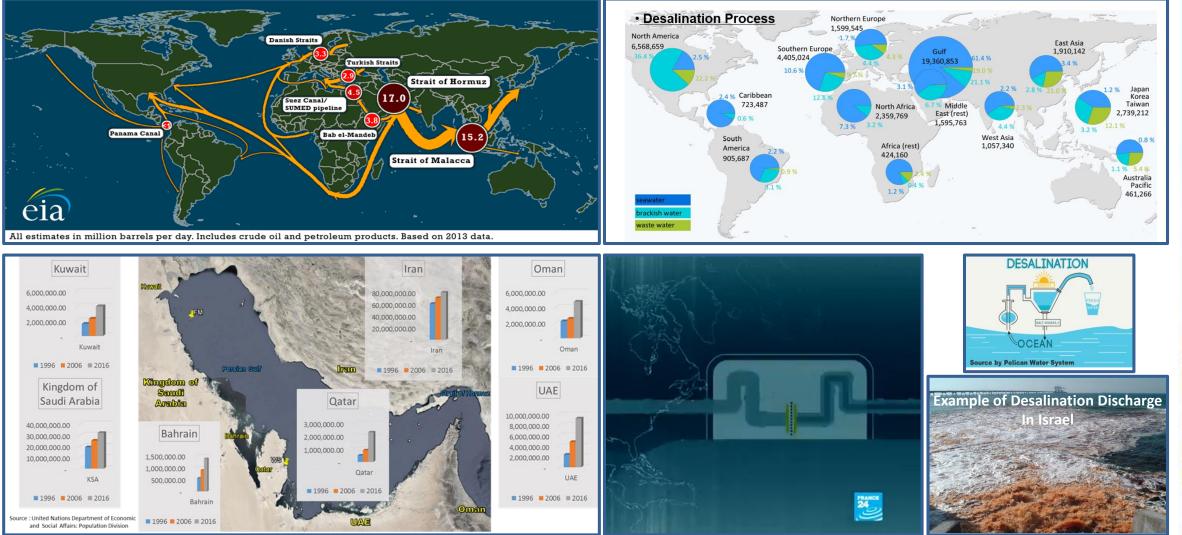
Texas A&M University, College Station

James M. Kaihatu, Ph.D

Texas A&M University, College Station

CONTENTS

* BACKGROUND


*** MODELING SYSTEM**

*** MODEL RESULTS**

*** SUMMARY AND FUTURE DIRECTIONS**

BACKGROUND

1CCE 2018

BACKGROUND

Main Concerns

Other Impacts

Chemicals

Hopner and Windelberg (1997) Von Medeazza (2005)

Economic Issue

Purnama et al. (2005) Sheppard et al. (2010)

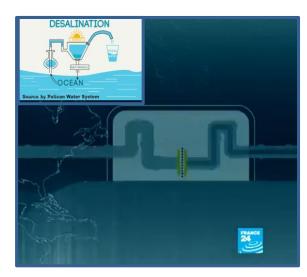
Land and Energy Uses

Al Barwani and Purnama (2008)

Bleninger and Jirka (2010)

Bleninger and Jirka, 2010

: Plant's location and production rate Effluent recirculation back to intake Produce low quality and efficient

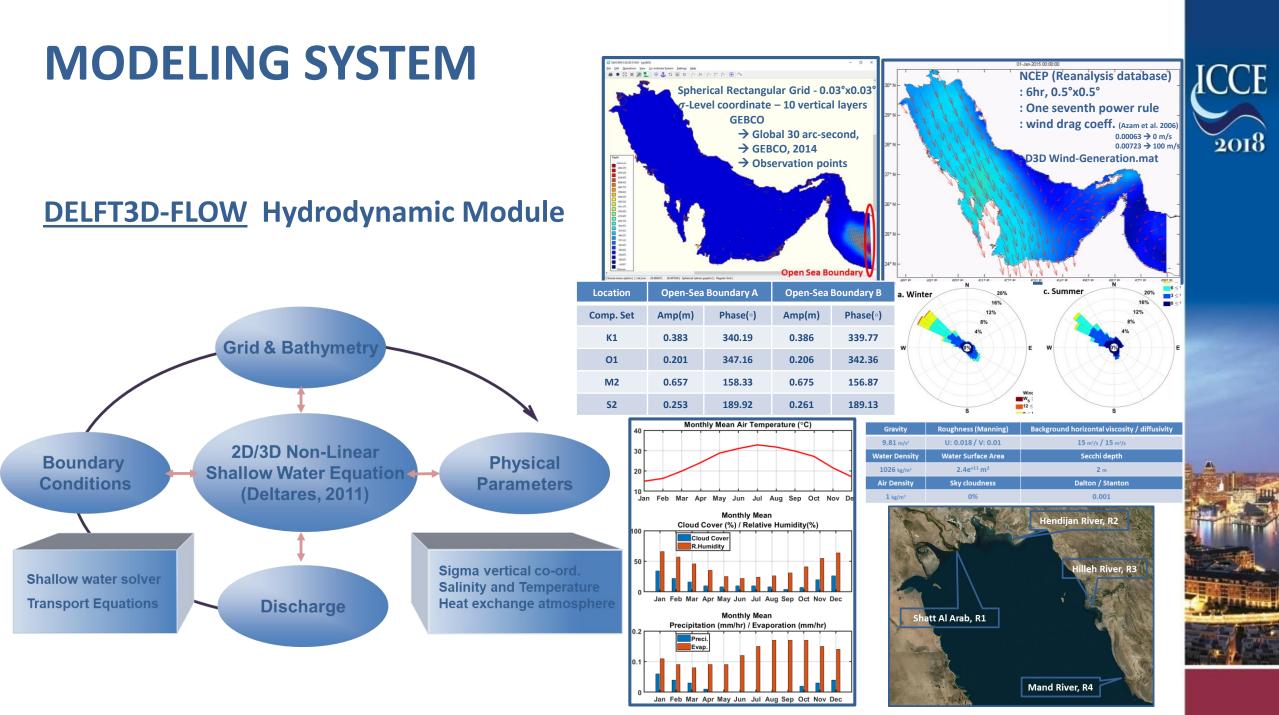

Concentrate Discharge

At or Near Point of Discharge Von Medeazza (2005) Cooley et al. (2006) Lattemann and Hopner (2008) Dupavillon and Gillander (2009) Salinity & Temperature increase

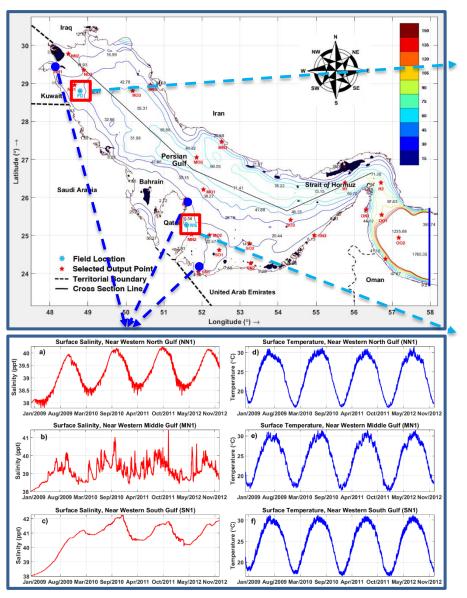
Mickley (1995): Sali (15%) / 5-15°C Talavera and Ruiz (2001): 5 ppt (10m), 2.5 ppt (20m), 1 ppt (30m) Einav et al. (2002): 4 ppt Purnama et al. (2005): 0.06 ppt Verdier (2011): high 2 ppt and more Talavera and Ruiz (2011): 2 ppt Dawoud and Al Mulla (2012): 0.005-0.01 ppt Uddin (2014): 0.06 ppt Alosari and Pokavanich (2017): 2 ppt, 3°C

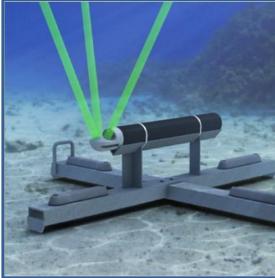
Intake Water System

Cooley et al. (2006) Lattemann and Hopner (2008) Lattemann (2010)


Modeling Study

Modeling Study


Purnama et al. (2005): Math. Model Bleninger (2006) Bleninger & Jirka (2010): Delft3D+COMIX Al Barwani and Purnama (2008) : Math. model Rodrigo et al. (2011): Physical model Alosari and Pokavanich (2017): Delft3D



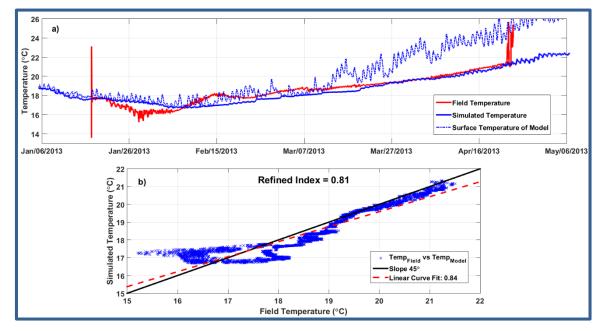
MODELING SYSTEM Model Validation

Field Deployment #1 ADCP-bottom framed

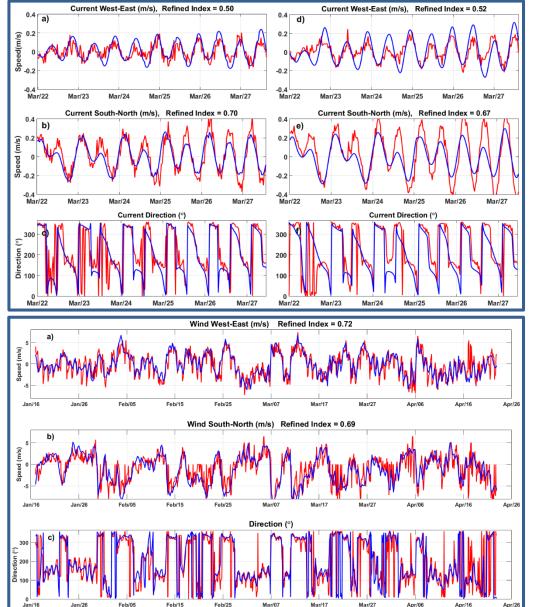
TAMUG Microstructure Group, in 2013

- 28.85°, 48.79° (Lat/Lon), offshore Kuwait
- <u>Currents</u> (m/s) / <u>Temperature</u> (at bottom, °C)
- Jan, 17th to Apr, 22nd , 2013
- Depth of field deployment: 25-26 m
- 3 min data intervals

Weather Station #2 Historic data for OTBD

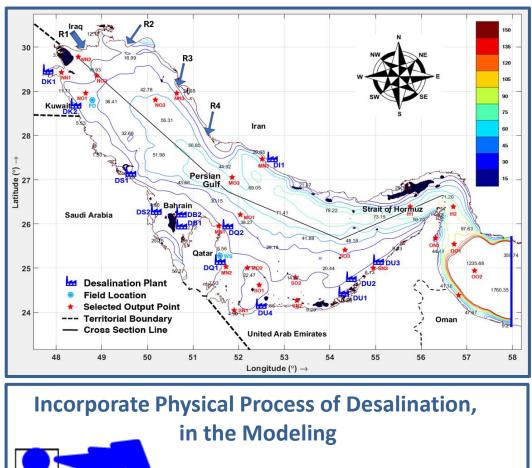

Doha International Airport weather station

- 25.33°, 51.52° (Lat/Lon)
- <u>Wind Speed</u> (m/s) / <u>Direction</u> (°)
- Jan, 17th to Apr, 22nd , 2013
- Elevation: 10 m


MODELING SYSTEM Model Validation

Refined Index of Agreement (Wilmott et al. 2012)

$$d_r = 1 - \frac{\sum_{i=1}^n |P_i - \overline{O}| + |O_i - \overline{O}|}{\sum_{i=1}^n (|O_i - \overline{O}| + |O_i - \overline{O}|)} = 1 - \frac{\sum_{i=1}^n |P_i - O_i|}{2 \times \sum_{i=1}^n |O_i - \overline{O}|}$$


	Temperature at bottom	Current Speed (Bottom Layer)		Current Speed (Middle Layer)		Wind Speed	
a		U	V	U	V	U	V
R.I	0.81	0.50	0.70	0.52	0.67	0.72	0.69

ICCE

2018

MODELING SYSTEM <u>Desalination Process</u>

flow rate (m³/s)

temperature (°C)

salinity (ppt)

Source and Sink *f*(time)

Investigate

Desalination Data

Elhakeem (2015)

3. Difficult to define the ambient water conditions at intake points : Outfall discharge is specified by the relationship Δ Salinity(ppt) **Δ** Temperature (°C) Type MSF 10 10 MED 15 10 44.8 RO

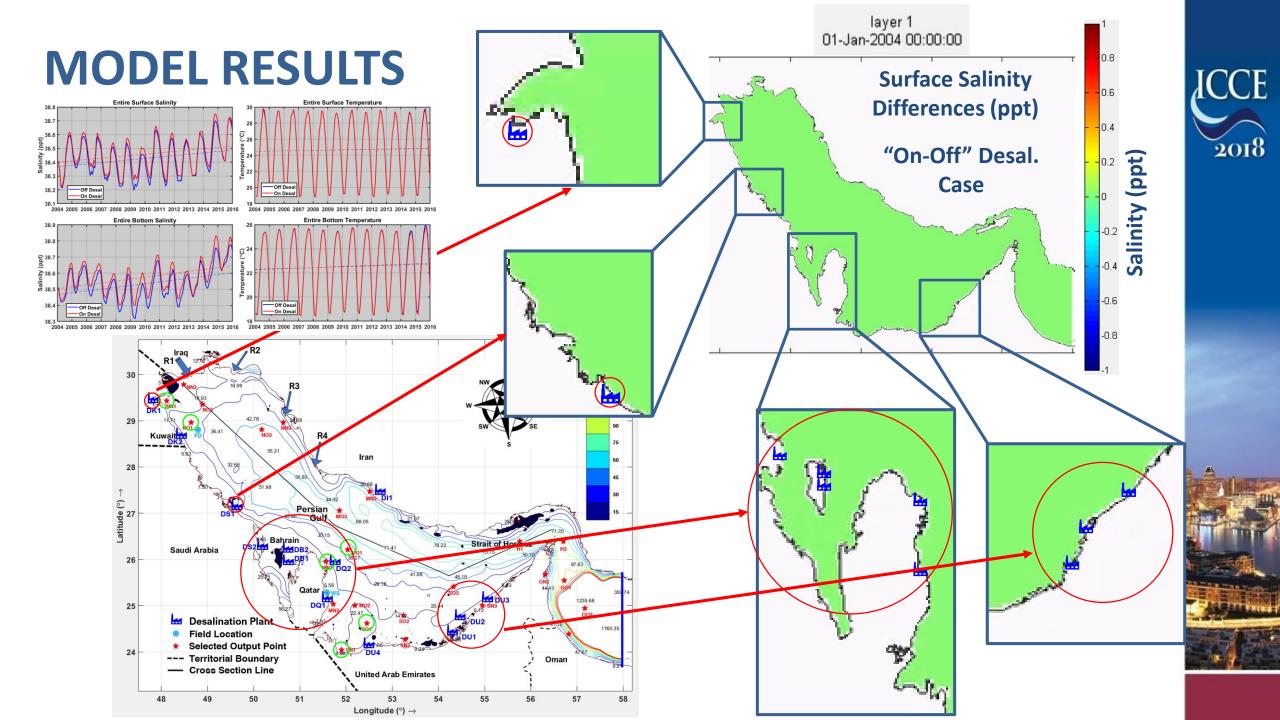
Parameterize Desalination Process

2. Operating continuously during the simulation time

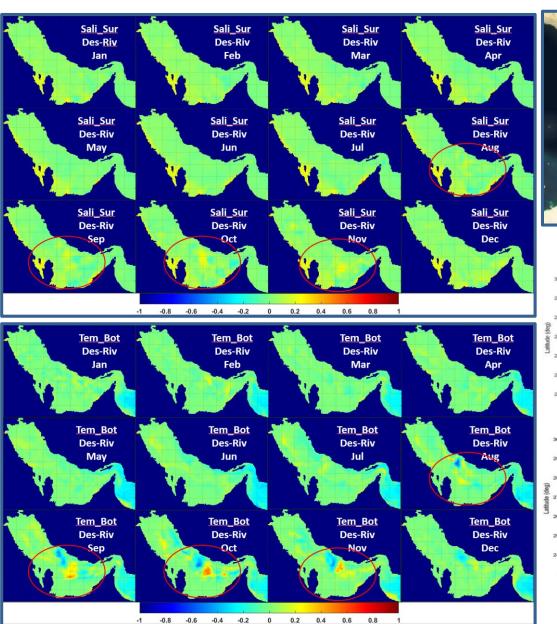
: Unclear when the plants open and close the water

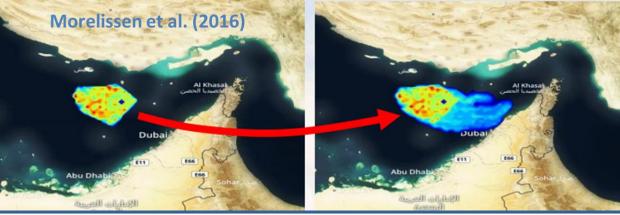
1. Same point of in-out discharge

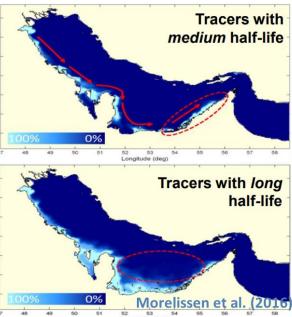
: Due to the grid resolution


gate at in-out discharge points

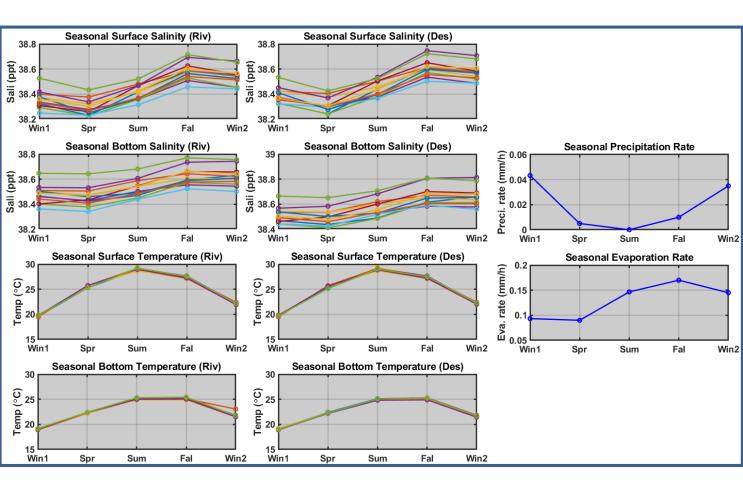
period


CCE 2018


month-by-month model runs \rightarrow approx. estimation of monthly mean intake / re-simulate the model


4. According to the tendencies (Bleninger et al., 2010) MSF/MED with positive buoyant plume RO with negative buoyant plume

MODEL RESULTS

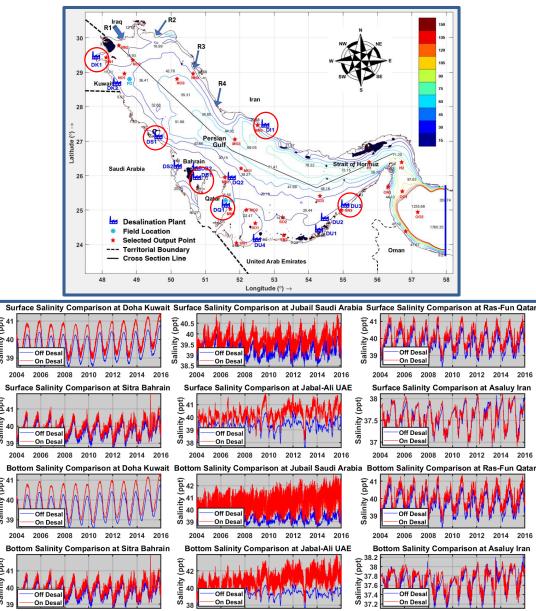

High increase in Red Circle Why?

JCCE

2018

- ightarrow No discharge pipes of desalination plants
- \rightarrow Likely due to the various physical process...
- → In similar line with the finding of Morelissen et al. (2016)
- : Depictions of the Gulf circulation, pollutant tracer, spreading of harmful algae blooms, oil spills
- : Tracer residence time is high in the vicinity around the red circle
- → due to Gulf circulation, evaporation, thermohaline process, IOSW inflows
- \rightarrow No specific time, but...
 - High rate of evaporation in summer and fall lead to increased salinity and temperature

MODEL RESULTS


_		Eva. Flux	Eva. Rate	
j		(W/m²)	(m/yr)	
	Winter	133.15	1.68	
	Spring	156.62	1.98	
	Summer	203.92	2.57	
	Fall	191.14	2.41	
	Mean	163.60	2.06	

Annual mean evaporation

1.44 m/yr (Privett, 1959)
1.8 m/yr (Kämpf and Sadrinasab, 2006)
2.0 m/yr (Hastenrath and Lamb, 1979) (Meshal and Hassan, 1986)
2.09 m/yr (Elhakeem et al., 2015)

MODEL RESULTS

	Country	Plant (Location)	Max. A Salinity	Max. A Temperature
1 Kuwait Al-Doha (DK1)		0.84 ppt	2.74 °C	
2	Saudi Arabia	Jubail (DS1)	(Surface) 3.41 ppt	(Bottom) 1.94 °C
3	Qatar	Ras Funats (DQ1)	(Bottom) 1.16 ppt	(Bottom) 0.86 °C
4	Bahrain	Sitra (DB1)	(Surface) 0.88 ppt	(Bottom) 0.48 °C
5	UAE	JabalAli (DU3)	(Bottom) <mark>4.21 ppt</mark>	(Bottom) 1.60 °C
			(Bottom) 0.43 ppt	(Surface) <mark>4.32 °C</mark>
6	Iran	Asaluy (DI1)	(Bottom)	(Bottom)

Negative impacts in marine ecology

+ Growth, egg production

Dana and Lenz, 1986/Burchett et al. 1989 Brown, 1997/Boeuf and Payan, 2001 Purnama et al. 2005 / Dupavillon and Gillander 2009

+ Salinity and temperature increase

Mangroves: Salinity → sensitive to salinity change (high risk on survival) Corals: Temperature → sensitive to temperature change (deadly impact) Fish: potential high risk of growth and eggs production Mollusks (like cuttlefish)

→ size and weight by 3 ppt increase
→ survival by 6 ppt increase

SUMMARY AND FUTURE DIRECTIONS

1. Provide a dependable solution "Fresh water", but...

- Arabian/Persian Gulf → Biggest user, Gulf climate, future availability of surface and groundwater
- Environmental concerns from high saline effluence from desalination
- Need to engage in long-term planning and management/ evaluate the environmental effects

2. Develop the Desalination Process in Modeling System

- Use the Delft3D-FLOW / Model runs "OFF-Desalination" and "On-Desalination"
- Parameterization of in-out desalination water cycle in modeling system
- A total of 76 desalination plants \rightarrow along the Gulf coast in modeling system

3. Evaluate the Environmental Effects

- Important perspective how the effluent affects the Gulf environment. (1-2 ppt, 1-3°C increase)
- Total 76 desalination plants \rightarrow salinity \uparrow (global gulf), temperature (locally, 0.2-1.0°C \uparrow)
- Seasonal characteristics → evaporation and precipitation (Highest level of salinity in Fall)
- Potential threat on the marine environment and ecosystem (Max. 4.21 ppt, 4.32°C increase)
- Provide a "worst case" scenario

4. Future Desalination

- High reliance on desalination in the Gulf \rightarrow Update desalination information
- Need a near field model to simulate the dilution and mixing problems
- Incorporate effect of climate change, updated diffusion mechanism, and future desalination process

ACKNOWLEDGEMENTS

Qatar National Research Fund (QNRF)

This work supported by the Qatar National Research Fund (a member of the Qatar Foundation) under Grant NPRP 7-660-1-124

Thank You for Attention

Questions or Comments

