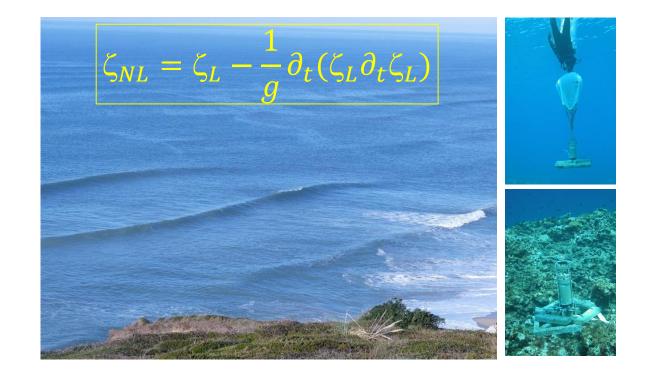


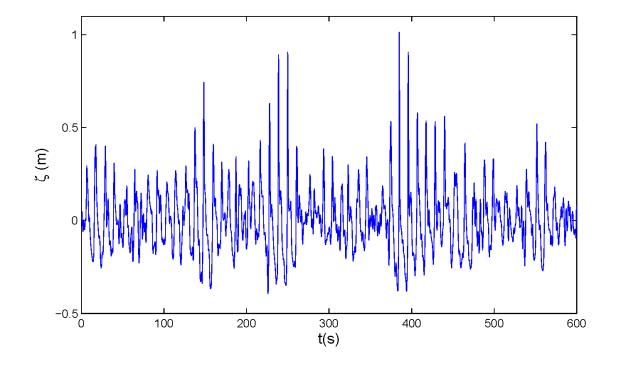
A simple and accurate nonlinear method for recovering the surface wave elevation from pressure measurements

Bonneton P.¹, Mouragues A.¹, Lannes D.¹, Martins K.², Michallet H.³

¹Bordeaux Univ., ²Bath Univ., ³Grenoble Univ.

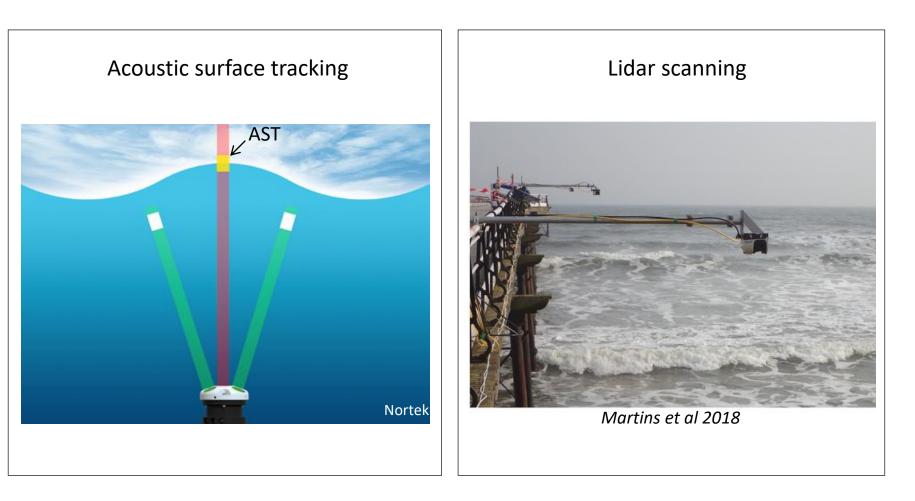


Accurate measurements of surface wave elevation ζ are crucial for many coastal applications:



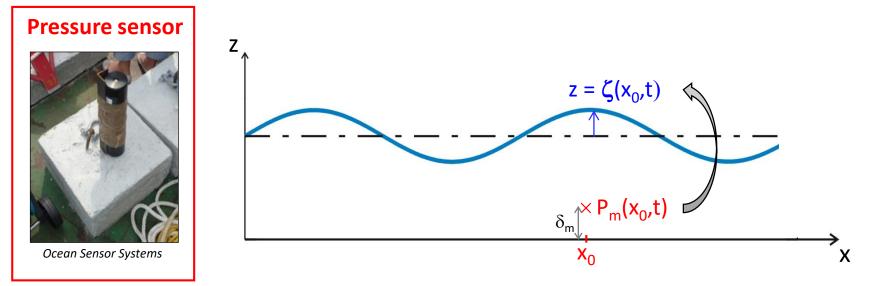
- □ wave overtopping and submersion
- navigation and platform safety
- □ wave-induced sediment transport

Direct measurement of the surface elevation \rightarrow highly accurate measurement



- ✓ expensive
- ✓ difficult to deploy and fragile
- AST sensitive to air bubbles and turbidity
- ✓ lidar requires the presence of nearshore structures

Pressure sensors are still a very useful tool for measuring waves



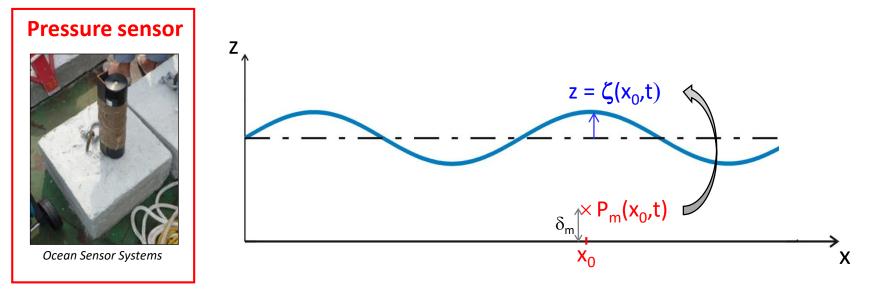
✓ cheap

- ✓ easy to deploy
- ✓ robust (storms, bottom trawling, ...)
- ✓ not sensitive to air bubbles

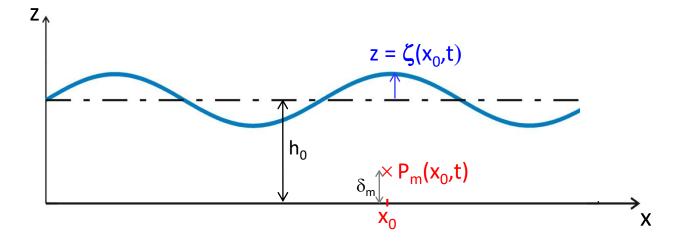
and turbidity

not a direct measurement of
$$\zeta \rightarrow \underline{\text{methods for recovering }} \zeta$$

Commonly used reconstruction methods and their limitations



long waves: tsunamis, tides, ... → **<u>hydrostatic reconstruction</u>**



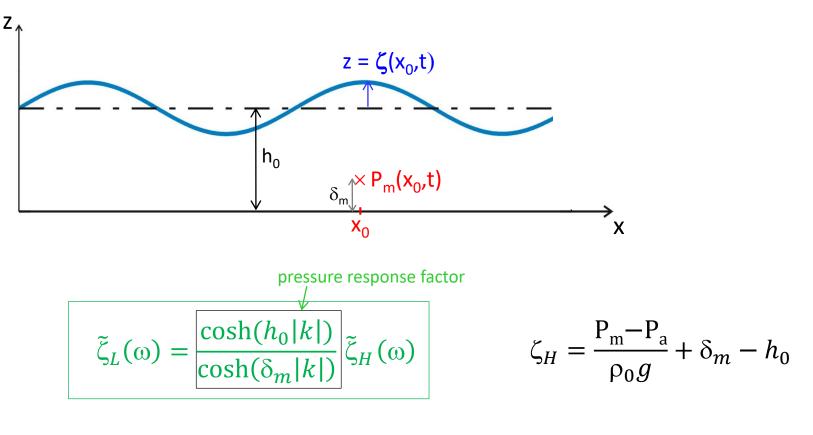
$$\frac{\partial P}{\partial z} = -\rho_0 g \implies h_H(x_0, t) = \frac{P_m - P_a}{\rho_0 g} + \delta_m$$

$$\zeta_H = \frac{\mathbf{P}_{\mathrm{m}} - \mathbf{P}_{\mathrm{a}}}{\rho_0 g} + \delta_m - h_0$$

swell, wind-generated waves \rightarrow non-hydrostatic reconstruction

swell, wind-generated waves \rightarrow non-hydrostatic reconstruction

recover the wave field by means of a transfer function based on <u>linear theory</u> "transfer function method"



 $\omega^2 = g|k| \tanh(h_0|k(\omega)|)$

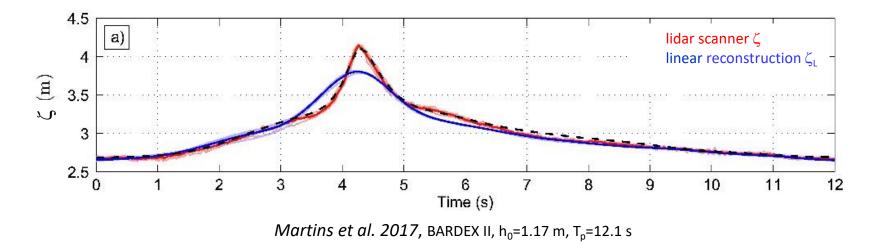
swell, wind-generated waves \rightarrow non-hydrostatic reconstruction

" transfer function method "

 \succ gives reasonable estimates for bulk wave parameters such as H_s

Guza and Thornton 1980, Bishop and Donelan 1987, Tsai et al. 2005, ...

Fails to describe the shape of nonlinear nearshore waves



 \rightarrow provides a poor description of the peaky and skewed shape of nonlinear waves \rightarrow underestimates the individual wave height by up to 30 %

There is a critical need for <u>nonlinear</u> reconstruction methods

Constantin 2012, Deconinck et al. 2012, Olivears et al. 2012, Clamond, 2013

 \rightarrow periodic waves of permanent form

Oliveras et al. 2012

 \rightarrow heuristic approximation for irregular waves

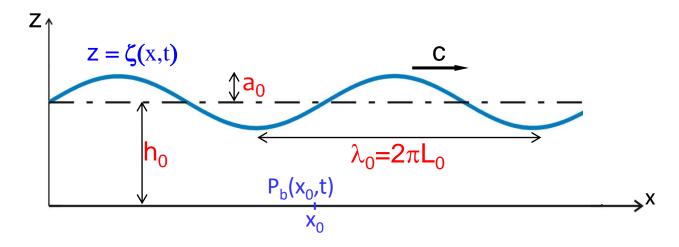
Two nonlinear reconstruction methods for irregular waves in the field

Bonneton, Lannes, Martins, Michallet, Coastal Eng. 2018

 \rightarrow weakly dispersive

Bonneton and Lannes, JFM 2017

 \rightarrow fully dispersive



$$\varepsilon = \frac{a_0}{h_0} = 0(1) \qquad \mu = \left(\frac{h_0}{L_0}\right)^2 \lesssim 1$$

$$\sigma = \frac{a_0}{L_0} = \varepsilon \sqrt{\mu} \quad \ll 1$$

Asymptotic expansion of the Euler equations in terms of $\sigma \rightarrow \phi = \phi_0 + \sigma \phi_1 + O(\sigma^2)$

$$\zeta_{NL} = \zeta_L - \sqrt{\mu}\sigma \,\partial_t (\zeta_L \partial_t \zeta_L)$$

Bonneton and Lannes (JFM 2017)

$$\hat{\zeta}_L(k) = \cosh(\sqrt{\mu}|k|)\hat{\zeta}_H(k)$$

In variables with dimension

$$\zeta_{NL} = \zeta_L - \frac{1}{g} \,\partial_t \left(\zeta_L \partial_t \zeta_L \right)$$

$$\hat{\zeta}_L(k) = \cosh(h_0|k|)\,\hat{\zeta}_H(k)$$

Waves in shallow water $(\mu \ll 1)$

Asymptotic expansion of the Euler equations in terms of $\mu \rightarrow \phi = \phi_0 + \mu \phi_1 + O(\mu^2)$

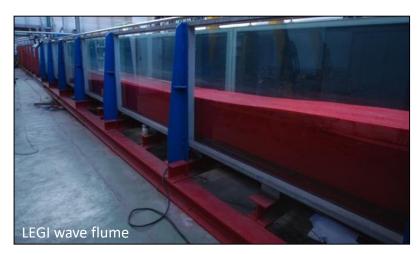
$$\zeta_{SNL} = \zeta_{SL} - \frac{1}{g} \,\partial_t \left(\zeta_{SL} \partial_t \zeta_{SL} \right)$$

Bonneton et al., Coastal Eng. 2018

$$\zeta_{SL} = \zeta_H - \frac{h_0}{2g} \partial_t^2 \zeta_H$$

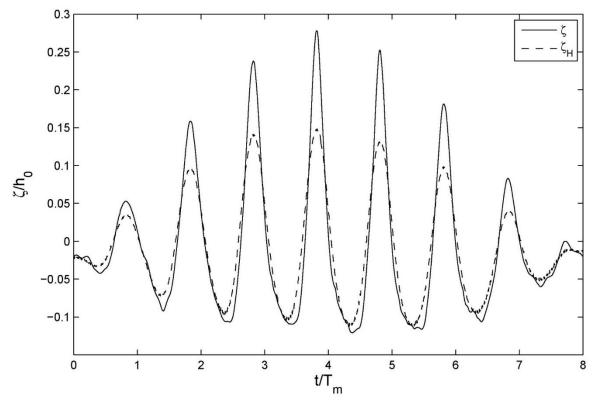
Applications to laboratory and field data

LEGI wave flume experiments, Michallet et al. 2017



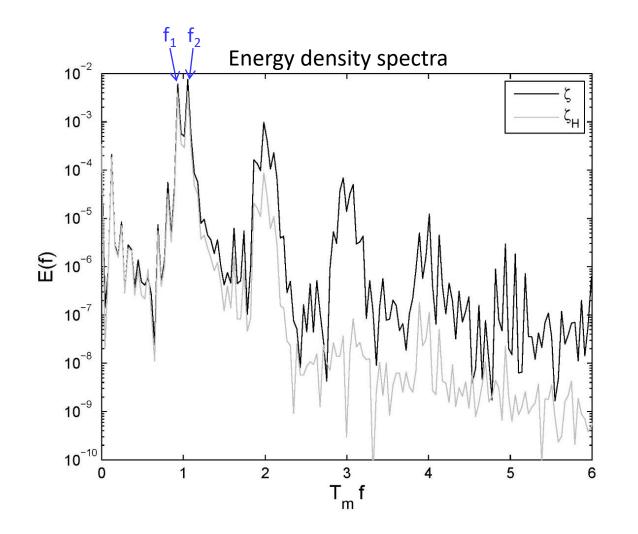
36 m long, 0.55 m wide

bichromatic waves propagating over a gently sloping (1/20) movable bed



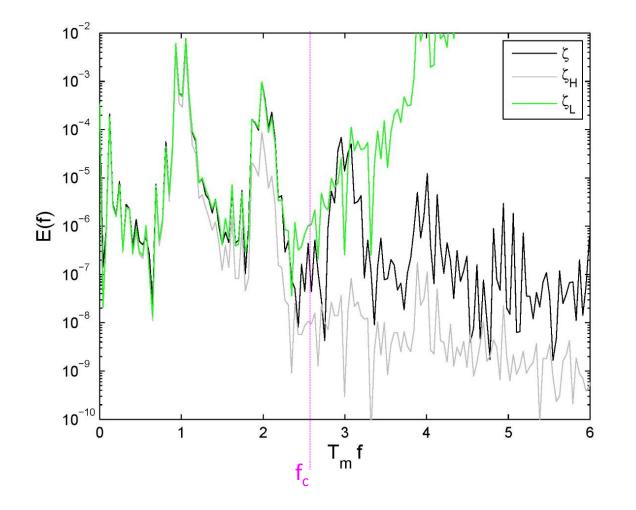
 ζ and P_m were synchronously measured in the shoaling zone, at 18.5m from the wave maker; h₀=0.326 m, T_m=1.7 s, µ=0.53

bichromatic waves propagating over a gently sloping movable bed



$\tilde{\zeta}_L(\omega) = \cosh(h_0|k(\omega)|) \tilde{\zeta}_H(\omega)$

 $\omega^2 = g|k| \tanh(h_0|k(\omega)|)$



linear reconstruction

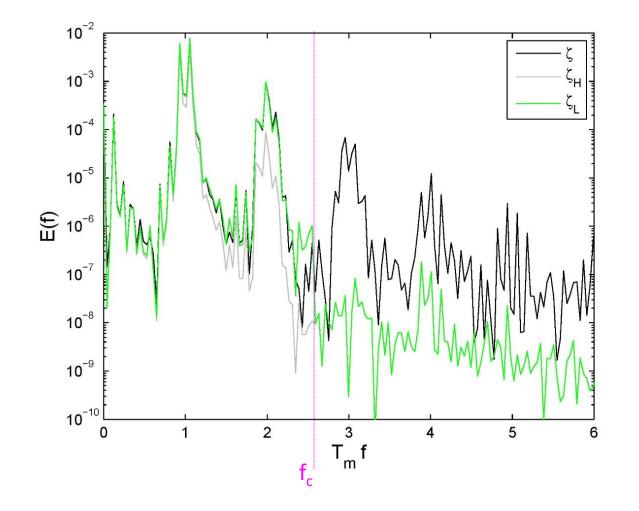
Applications to laboratory and field data

Fully dispersive reconstruction

linear reconstruction

$\tilde{\zeta}_L(\omega) = \cosh(h_0|k(\omega)|) \tilde{\zeta}_H(\omega)$

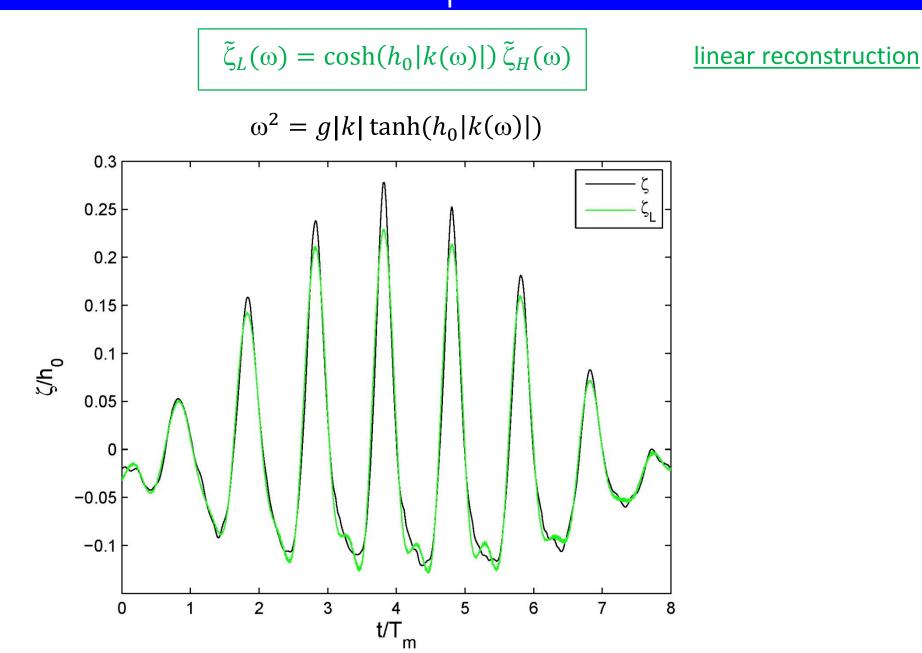
 $\omega^2 = g|k| \tanh(h_0|k(\omega)|)$



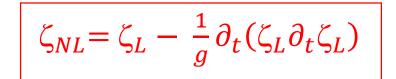
$$f > f_{c}$$
$$\tilde{\zeta}_{L}(\omega) = \tilde{\zeta}_{H}(\omega)$$

Applications to laboratory and field data

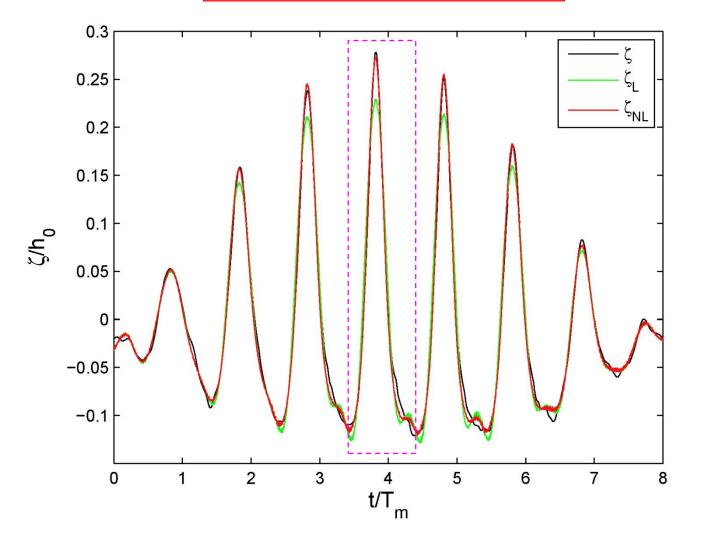
Fully dispersive reconstruction



Fully dispersive reconstruction



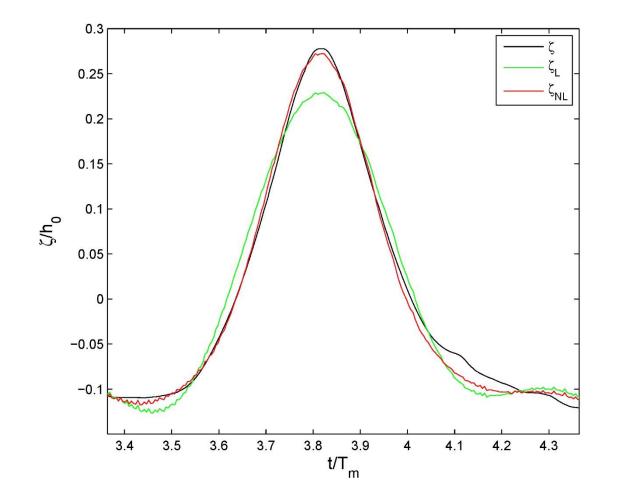
non-Linear reconstruction



Fully dispersive reconstruction

$$\zeta_{NL} = \zeta_L - \frac{1}{g} \partial_t (\zeta_L \partial_t \zeta_L)$$

non-Linear reconstruction



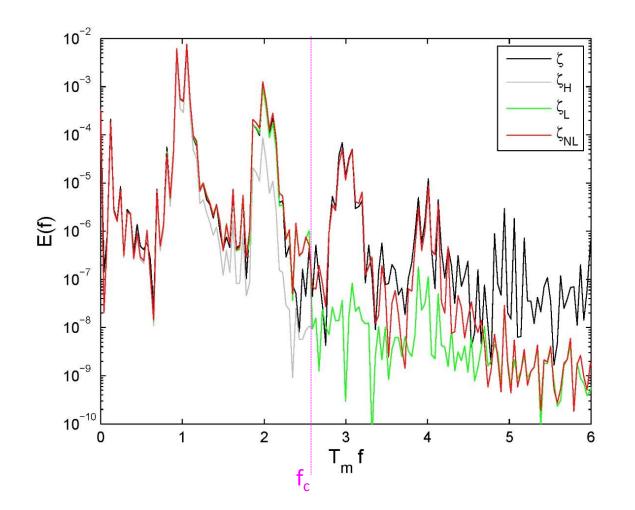
$$S_k = \frac{\langle (\zeta - \langle \zeta \rangle)^3 \rangle}{\langle (\zeta - \langle \zeta \rangle)^2 \rangle^{3/2}}$$

	ζ direct measurement	ζL	$\zeta_{\sf NL}$
S _K	0.93	0.70	0.96
S _K error	_	25%	3%

Fully dispersive reconstruction

$$\zeta_{NL} = \zeta_L - \frac{1}{g} \partial_t (\zeta_L \partial_t \zeta_L)$$

non-Linear reconstruction



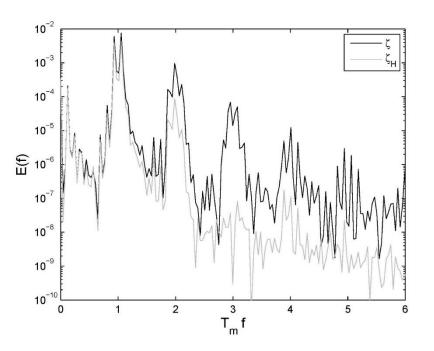
Highest wave nonlinearities generally occur in shallow water close to the onset of breaking

nonlinear weakly dispersive reconstruction

$$\zeta_{SNL} = \zeta_{SL} - \frac{1}{g} \,\partial_t \left(\zeta_{SL} \partial_t \zeta_{SL}\right)$$

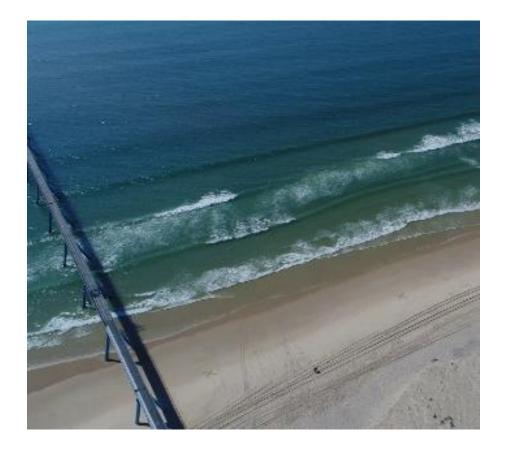
$$\zeta_{SL} = \zeta_H - \frac{h_0}{2g} \partial_t^2 \zeta_H$$

- local in time
- > no frequency cut-off f_c
- reconstruction of the whole elevation density spectrum
- μ < 0.3
 </p>



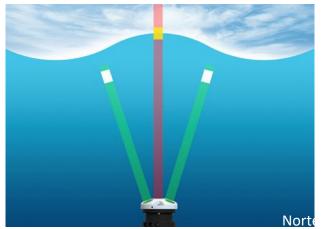
Field campaign (April 13-14, 2017)

La Salie beach, southern part of the French Atlantic coast

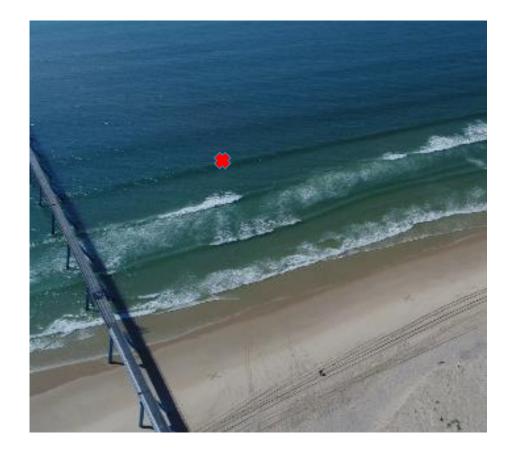


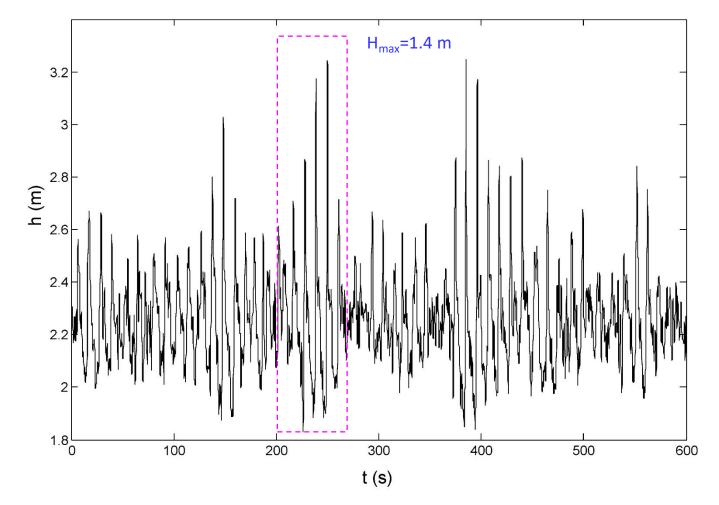
Instruments were deployed at low tide:

- pressure transducers (Ocean Sensor Systems)
- ▶ Nortek ADCP, Signature 1000 \rightarrow direct measurement of ζ from the vertical beam of the ADCP



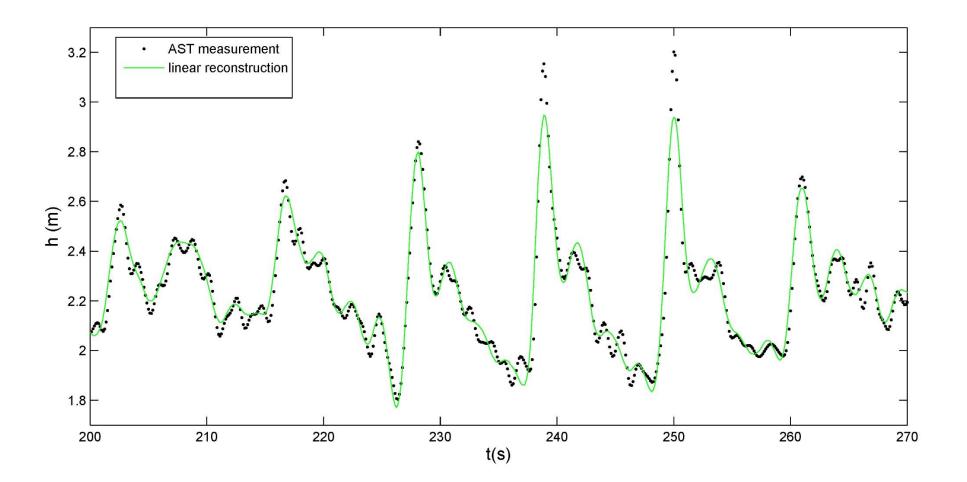
Field campaign \rightarrow nonlinear waves in the shoaling zone just prior to breaking





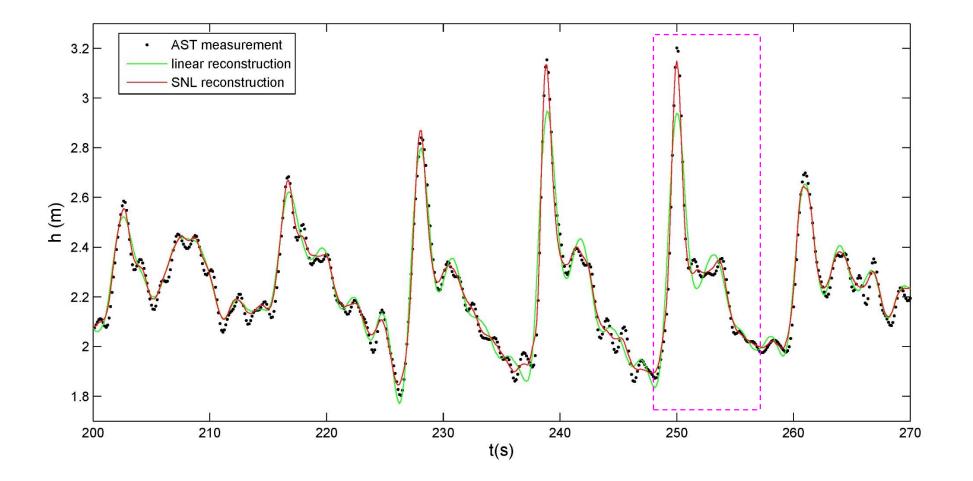
 $h_0=2.25 \text{ m}, H_s=0.70 \text{ m}, T_p=11.1 \text{ s}$

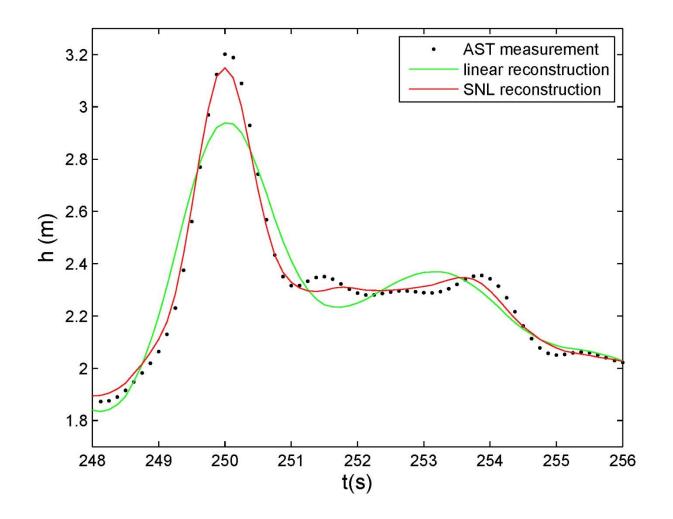
 μ =0.075 \rightarrow weakly dispersive waves

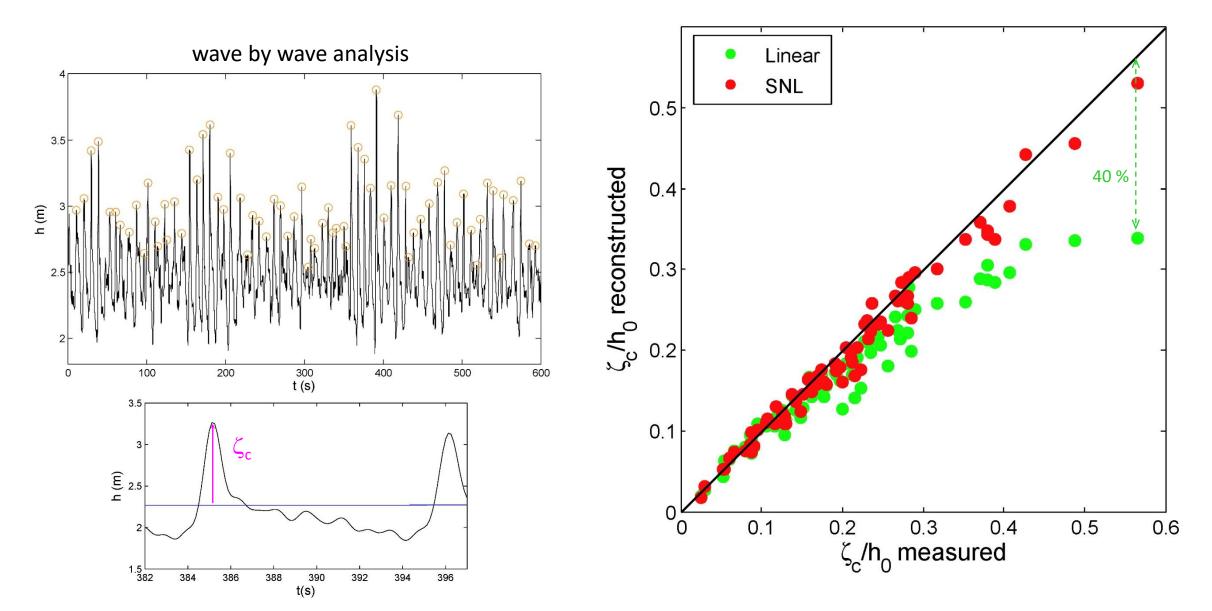


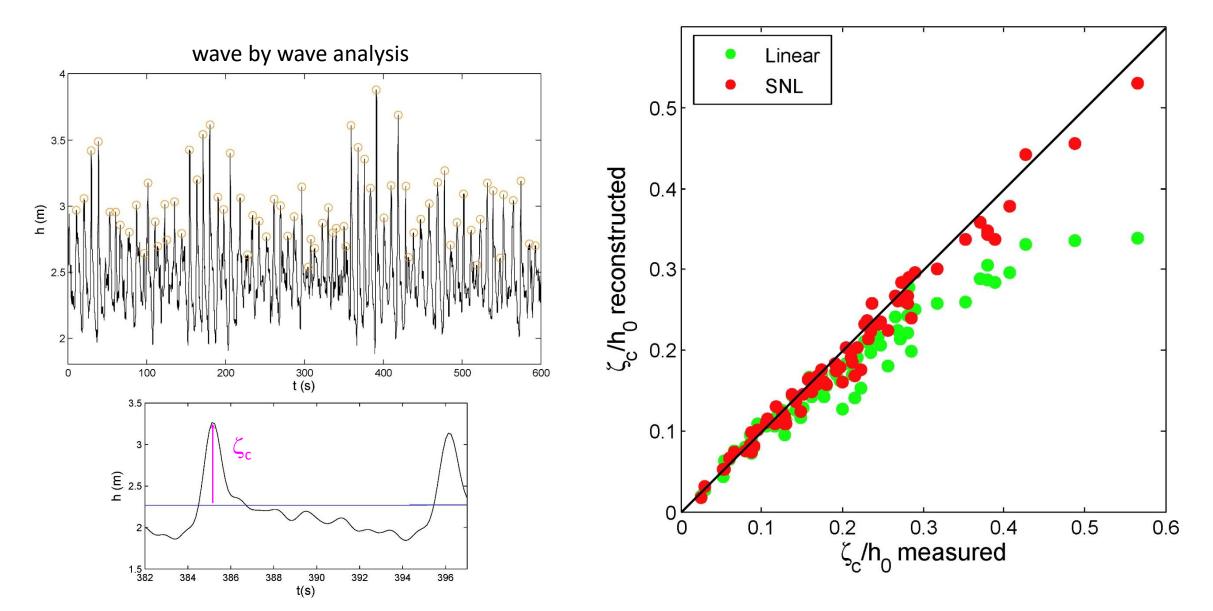
$$\zeta_{SNL} = \zeta_{SL} - \frac{1}{g} \partial_t (\zeta_{SL} \partial_t \zeta_{SL})$$

$$\zeta_{SL} = \zeta_H - \frac{h_0}{2g} \partial_t^2 \zeta_H$$









Conclusion

Two novel nonlinear methods for recovering the surface wave elevation from pressure measurements

10

10

10

general fully dispersive method $\zeta_{NL} = \zeta_L - \frac{1}{g} \partial_t (\zeta_L \partial_t \zeta_L)$ μ=0.53 10-2 10^{-3} 10-4 10 () ⊒ 10^{-€} 10 10-8 10⁻⁹ 10⁻¹ f_c T_m³f 0 1 2 5

 $\zeta_{SNL} = \zeta_{SL} - \frac{1}{g} \partial_t (\zeta_{SL} \partial_t \zeta_{SL})$ $\zeta_{SL} = \zeta_H - \frac{h_0}{2g} \partial_t^2 \zeta_H$ μ=0.28 10 () Ш 10⁻ 10

2

3 T_f 5

weakly dispersive method, $\mu \leq 0.3$

Two novel nonlinear methods for recovering the surface wave elevation from pressure measurements

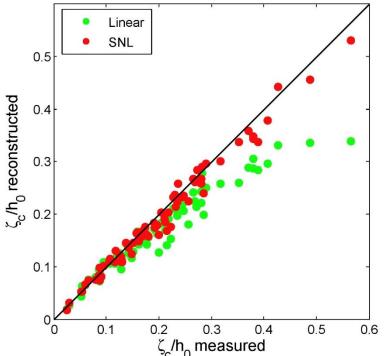
provide much better results compared to the transfer function method commonly used in coastal applications

are very simple and easy to use

represent an economic alternative to direct wave elevation measurement methods (AST and Lidar)

are a valuable tool for accurately characterizing extreme waves

in shallow and intermediate water depths



Thank you for your attention

