

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

The State of the Art and Science of Coastal Engineering

Sediment Transport And Shoreline Response To Nearshore Placement Of Dredged Sediment In Southern Lake Michigan, USA

Brian C. McFall, Research Civil Engineer, PhD, PE

U.S. Army Engineer Research and Development Center (ERDC), Vicksburg, MS

Co-authors: Katherine E. Brutsché, PhD, ERDC

Honghai Li, PhD, ERDC

David F. Bucaro, PE, U.S. Army Corps of Engineers Chicago District

Erin C. Maloney, PE, U.S. Army Corps of Engineers Chicago District

Shoreline Investigation

$\,\circ\,$ Historical Analysis

- Aerial Imagery Analysis
- Nourishment Records
- Wave Hindcasts
- Project Monitoring
- \circ Numerical Modeling
 - Sediment Mobility Tool
 - Coastal Modeling System

Historical Analysis

○ Aerial Imagery

1969, 1973, 1998, 2005, 2010, 2012, 2014
USGS Digital Shoreline Analysis System (DSAS)

- Cross-shore transects every 50 m
- \circ Water Level Calumet Harbor, IL
- Shore slope from USDA's Geospatial Data
 Gateway LiDAR Bare Earth DEM

Aerial Imagery

JCCE 2018

Historical Analysis

Date	Erosion/Accretion	Material Placed – Beach
Range	Average (m)	& Nearshore (m ³)
1969 to 1973	-2.57	-
1973 to 1998	10.88	717k
1998 to 2005	42.34	204k
2005 to 2010	6.83	422k
2010 to 2012	2.09	-
2012 to 2014	-0.92	104k
1969 to 2014	45.37	1.5M

JCCE 2018

1969-2014

Monitoring

 $_{\odot}$ July 2016

 $\,\circ\,$ 107,000 m^3 of Dredged Sediment

• Placed 5.5 m depth

 \circ 2 ADCP's

- \circ 3 Surveys
 - Pre-placement
 - Post Placement
 - ~1 month after Post Placement (before lake freezes over)

USGS – Indiana, Illinois, & Kentucky
 Water Science Centers

ICCE

2018

Modeling

9/19/2016

Sediment Mobility Tool Coastal Modeling System (CMS) Wave and Flow

Sediment Mobility Tool

http://navigation.usace.army.mil/SEM/SedimentMobility

The Sediment Mobility Tool is a scoping level tool for siting nearshore placement areas of dredged material. The tool uses Snell's Law to transform WIS hindcast wave data to the nearshore site. The depth of closure, which is a specified depth along a beach profile where net sediment transport is very small or nonexistent, is calculated using several commonly used empirical equations which are described by Brutsche et al. (2016). The frequency of sediment mobility is calculated using both linear and nonlinear stream-function wave theories using procedures described by McFall et al. (2016). The cross-shore sediment migration is calculated using an empirical relationship described by Larson and Kraus (1992). The wave rose provides the axis of wave dominated transport at the nearshore site.

User Input:		
Shoreline Angle	263°	
Placement Site Latitude	30.22° N	
Placement Site Longitude	-86.91° W	
WIS Station	73171	
Years of WIS Data	1980 - 2015	
d ₅₀	0.26 mm	
Nearshore Placement Depth	8.00 ft	
Current 3 ft Above the Bed	0.33 ft/s	
Water Temperature	68.00 °F	
Water Salinity	35.00 psu	

1CCE 2018

Sediment Mobility Tool Background

 \circ Answers:

- Will the Sediment Placed in the Nearshore Move?
- Where Is Sediment Likely To Go?

 $\circ\,$ Ideal for:

- Preliminary Siting of a Nearshore Placement Projects
- Small Projects That Don't Warrant a Full Numerical Model
- $\,\circ\,$ Maximizes use of readily available data
- $\,\circ\,$ Developed into a Web App

http://navigation.usace.army.mil/SEM/SedimentMobility McFall et al. (2016)

Sediment Mobility Tool Background

 $\circ\,$ Frequency of Mobility:

- Linear Wave Theory (Bed Shear Stress)

$$\tau_{cr} = \theta_{cr} g (\rho_s - \rho) d_{50} \qquad \tau_m = \tau_c \left[1 + 1.2 \left(\frac{\tau_w}{\tau_c + \tau_w} \right)^{3.2} \right]$$
$$\tau_{max} = [(\tau_m + \tau_w \cos \phi)^2 + (\tau_w \sin \phi)^2]^{1/2}$$

- Stream Function Wave Theory (Near-bed Velocity)

$$u_{cr} = \sqrt{8 g \gamma d_{50}} \qquad d_{50} \le 2.0 mm$$
$$u_{\max \, crest} = \left(\frac{H}{T}\right) \left(\frac{h}{L_o}\right)^{-0.579} \exp\left[0.289 - 0.491 \left(\frac{H}{h}\right) - 2.97 \left(\frac{h}{L_o}\right)\right]$$

http://navigation.usace.army.mil/SEM/SedimentMobility McFall et al. (2016)

Sediment Mobility Tool Analysis

WIS Station 94001

- All Waves: 1976-2014
- $o d_{50} = 0.15 \text{ mm}$
- Depth = 5.5 m (18 ft)
- Estimated longshore current: 0.05 m/s

Sediment Mobility Tool (SMT)

Sediment Mobility Tool (SMT)—Scoping-level tool that displays Depth of Closure (DoC) and sediment mobility data for the US coastline to help in determining how best to use dredged sediment and where to site nearshore placement areas. Click help for additional details.

http://navigation.usace.army.mil/SEM/SedimentMobility McFall et al. (2016)

Sediment Mobility Tool Analysis

	All Waves (1976-2014)	
$d_{50}\left(mm\right)$	Frequency of Mobilization	Sediment Migration
0.1	41 - 54%	68% Onshore
0.15	37 - 48%	91% Onshore
0.2	34 - 44%	97% Onshore
0.3	30 - 38%	99% Onshore

During Monitoring Period				
0.15	37 - 48%	64% Onshore		

Model Forcing:

 $\circ\,$ Offshore Wind and Waves:

- NDBC 45007
- Transformation validated against ADCP

 $\circ\,$ Water Level Measurements:

- Calumet Harbor, Illinois

Nearshore Wave Conditions:

○ Summer: H_{m0} = 0.14 m ○ Fall: H_{m0} = 0.6 m ○ Entire time: H_{m0} = 0.4 m, T_{p} =3.8 s

ICCE

2018

Wave Height and Direction during the 11 November 2016 storm

Currents during the 11 November 2016 storm

1CCE 2018

TALL.

Summary

- Historical imagery, dredging records, and wave hindcasts can be used improve the understanding of the system
- Project monitoring was integral for the evaluation of physical forces driving sediment transport and model validation
- Sediment Mobility Tool showed accretionary wave climate with longshore transport
- CMS capable of simulating waves, current, sediment transport, and morphology changes in a coastal lake environment
- All the techniques could be used in other locations to monitor nearshore placement areas

THANK YOU!

Brian McFall Brian.C.McFall@usace.army.mil

