36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 - August 3, 2018

The State of the Art and Science of Coastal Engineering

Countermeasure against Erosion behind Submerged Breakwater due to Sea Level Rise

Yoshiaki Kuriyama (Port and Airport Res. Inst.)

Masayuki Banno (Port and Airport Res. Inst.)

- 1. Insufficient sediment supply from rivers
- 2. Interruption of sediment movement by port and coastal structures

Detached Breakwater

Submerged Breakwater

Submerged Breakwater

Kuriyama and Banno (2016) showed that the shoreline on a beach protected by a submerged breakwater will retreat 60 m over the next 100 years.

Objective

To investigate the effectiveness of countermeasures against the erosion due to sea level rise and land subsidence using a shoreline prediction model.

Contents

- Outline of study site
- Future shoreline change under SLR and land subsidence
- Effects of countermeasures

Niigata Coast Sekiya Diversion Channel Shinano River [mage © 2010 DigitalGlobe Data © 2010 MIRC/JHA 37°55'26.93″N 139°01'50.30″E 標高 44 フィート 高度 39644 フィート 画像取得日: 2008 年 10 月 1 日

Niigata Coast (1915 - 1985)

Causes of the beach erosion
Constructions of a jetty and a breakwater
Openings of diversion channels
Land subsidence

Monthly-Averaged Wave Height and Period

Yearly-Averaged Wave Height and Period

Monthly-Averaged Sea Level

Yearly-Averaged Sea Level

Land Subsidence

Methods

- Shoreline prediction model: cross-shore sediment transport
- Period: 60 years from 2011 to 2061
- Relative sea level change:
 Sea Level Rise (SLR) under RCP 8.5 scenario
 (0.74 m/ 100 years) +
 Land Subsidence (LS, 13.0 mm/year)
- Waves: 2001 to 2010
- Time interval: 3 months

Shoreline prediction model

$$y_{s,i} = y_{s,0} + \sum_{j=1}^{i} \left(\frac{dy_s}{dt}\right)_{j} \Delta t$$
 (Kuriyama & Banno, 2016 CENG)

$$\left(\frac{dy_s}{dt}\right)_j = a_0 + a_1 + a_2 E_j^2 + a_3 E_j + a_4 y_{s,j-1}$$

 y_s : Shoreline position at z = 0.5 m

E: Offshore wave energy flux corrected with the consideration of energy dissipation over submerged breakwater

 a_0 : Geometrically obtained shoreline change rate due to land subsidence, (amount of land subsidence)/(foreshore slope)

 a_1 to a_4 : Free parameters

Consideration of energy dissipation over submerged breakwater

Monthly-Averaged Wave Height and Period

Calibration

(Kuriyama & Banno, 2016 CENG)

Countermeasures

Effects of Countermeasures

Conclusions

- At the Niigata Coast, which is protected by a submerged breakwater, the shoreline is predicted to retreat about 30 m in 60 years due to sea level rise under the RCP8.5 scenario and land subsidence.
- Even a crown height increase of 1.0 m induces shoreline advance of 5 m owing to the enhanced energy dissipation over the heightened submerged breakwater.

