36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

The State of the Art and Science of Coastal Engineering

Long Waves Dissipation and Harmonic Generation by Coastal Forests

- Che-Wei Chang¹, Philip L.-F. Liu^{2, 3}
- August 1st, 2018
- School of Civil and Environmental Engineering
- Cornell University

³ Institute of Hydrological and Oceanic Sciences, National Central University

¹ Now at: Disaster Prevention Research Institute, Kyoto University

² Department of Civil and Environmental Engineering, National University of Singapore

Motivations & Objectives

- Coastal forests non-intrusive (natural) protection against ocean waves
- How effective can coastal vegetation dissipate incoming wave energy?
- Interactions between waves and vegetation:
 - > Physical modeling rigid/flexible cylinders or live vegetation (Wu et al. 2011, Maza et al. 2015)
 - Numerical modeling N-S models, depth-integrated models (NLSW, Boussinesq-type equations)
 - ➤ Mathematical modeling Homogenization theory (Mei et al. 2011, 2014)
- Previous work:
 - Develop a model to estimate wave attenuation by coastal forests of arbitrary shape
 - Linear model vs. experimental data (Liu et al. 2015, Chang et al. 2017a, b)

How about nonlinearity?

Motivations & Objectives

- Previous work:
 - > Develop a model to estimate wave attenuation by coastal forests of arbitrary shape
 - Linear model vs. experimental data (Liu et al. 2015, Chang et al. 2017a, b)

How about nonlinearity?

- Extend the linear model (Mei et al. 2011) homogenization theory
- Consider the effects of weak nonlinearity
- Investigate the nonlinear effects and harmonic generation

- Conditions:
 - > Shallow water: wavelength is much greater than water depth
 - > Tree spacing is much smaller than the wavelength
 - > Incident waves: simple-harmonic waves with weak nonlinearity

Governing equations (shallow water):

$$\frac{\partial \eta}{\partial t} + \frac{\partial}{\partial x_i} \left[u_i \left(h_0 + \eta \right) \right] = 0, \quad i = 1, 2$$

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -g \frac{\partial \eta}{\partial x_i} + \nu_e \frac{\partial^2 u_i}{\partial x_j \partial x_j}, \quad i \& j = 1, 2$$

 u_i : velocity components

 η : free surface elevation

 ν_e : eddy viscosity \leftarrow Spatial average

Incident waves:

simple-harmonic waves with weak nonlinearity

• Governing equations (shallow water):

$$\frac{\partial \eta}{\partial t} + \frac{\partial}{\partial x_i} \left[u_i \left(h_0 + \eta \right) \right] = 0, \quad i = 1, 2$$

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -g \frac{\partial \eta}{\partial x_i} + \nu_e \frac{\partial^2 u_i}{\partial x_j \partial x_j}, \quad i \& j = 1, 2$$

 u_i : velocity components

 η : free surface elevation

 ν_e : eddy viscosity \longrightarrow Spatial average

Parameters:

$$\varepsilon = k_{\rm inc} \ell = \frac{\omega \ell}{\sqrt{gh_0}} \ll \mathcal{O}(1), \quad \alpha = \frac{H_{\rm inc}/2h_0}{\varepsilon} = \mathcal{O}(1) \quad \Longrightarrow \quad \left| \quad \mathcal{O}\left(\frac{H_{\rm inc}}{2h_0}\right) = \mathcal{O}(\varepsilon) \right|$$

Weakly nonlinear waves

• Governing equations (shallow water):

$$\frac{\partial \eta}{\partial t} + \frac{\partial}{\partial x_i} \left[u_i \left(h_0 + \eta \right) \right] = 0, \quad i = 1, 2$$

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -g \frac{\partial \eta}{\partial x_i} + \nu_e \frac{\partial^2 u_i}{\partial x_j \partial x_j}, \quad i \& j = 1, 2$$

 u_i : velocity components

 η : free surface elevation

 ν_e : eddy viscosity \leftarrow Spatial average

Eddy viscosity (Mei et al. 2011):

$$u_e = 1.86(1-n)^{2.06}U_0\ell, \quad U_0 = \sqrt{gh_0}A_{\rm inc}/h_0$$
 porosity

Shallow-water wave characteristic velocity

Homogenization (multi-scale perturbation theory)

Summation of different harmonics

$$u_i = \frac{1}{2} \sum_{\mathfrak{m} = -\infty}^{\infty} \tilde{u}_{i,\mathfrak{m}} e^{-\mathrm{i}\mathfrak{m}t} \qquad \eta = \frac{1}{2} \sum_{\mathfrak{m} = -\infty}^{\infty} \tilde{\eta}_{\mathfrak{m}} e^{-\mathrm{i}\mathfrak{m}t} \qquad \longrightarrow \qquad (\tilde{u}_{i,-\mathfrak{m}}, \ \tilde{\eta}_{-\mathfrak{m}}) = \text{ complex conjugate of } (\tilde{u}_{i,\mathfrak{m}}, \ \tilde{\eta}_{\mathfrak{m}})$$

Micro-scale (cell) problem - NONLINEAR

Harmonic generation

Boundary conditions:

$$\tilde{u}_{i,\mathfrak{m}}^{(0)} = 0, \quad \vec{x} \in \mathcal{S}_{c}$$

$$\langle \tilde{\eta}_{\mathfrak{m}}^{(1)} \rangle = \frac{1}{\Omega} \iint_{\Omega_{c}} \tilde{\eta}_{\mathfrak{m}}^{(1)} dx_{1} dx_{2} = 0$$

Macro-scale pressure gradient

Dimensionless eddy viscosity:

$$\sigma = \frac{\nu_e}{\omega \ell^2} \equiv 1.86(1 - n)^{2.06} \frac{1}{k_{\rm inc}\ell} \left(\frac{A_{\rm inc}}{h_0}\right), \quad k_{\rm inc} = \frac{\omega}{\sqrt{gh_0}}$$

Nonlinear B.V.P – Unknowns: $\tilde{u}_{i,m}^{(0)}$ and $\tilde{\eta}_{m}^{(1)}$

- Micro-scale (cell) problem NONLINEAR
 - ➤ Modified pressure correction method iteration

Dimensionless eddy viscosity

$$\frac{\partial \tilde{u}_{i,\mathfrak{m}}^{(0)}}{\partial t} - \mathrm{im} \tilde{u}_{i,\mathfrak{m}}^{(0)} + \frac{\alpha}{2} \sum_{\mathfrak{m}_{1} = -\infty}^{\infty} \frac{\partial \left(\tilde{u}_{j,\mathfrak{m}_{1}}^{(0)} \tilde{u}_{i,\mathfrak{m} - \mathfrak{m}_{1}}^{(0)} \right)}{\partial x_{j}} = -\frac{\partial \tilde{\eta}_{\mathfrak{m}}^{(0)}}{\partial X_{i}} - \frac{\partial \tilde{\eta}_{\mathfrak{m}}^{(1)}}{\partial x_{i}} + \sigma \frac{\partial^{2} \tilde{u}_{i,\mathfrak{m}}^{(0)}}{\partial x_{j} \partial x_{j}}$$

Pseudo-time derivative

Macro-scale pressure gradient (GIVEN)

Finite difference with staggered discretization:

$$\frac{\left(\tilde{u}_{i,\mathfrak{m}}^{(0)}\right)^{\mathbf{n_{t}}+1}-\left(\tilde{u}_{i,\mathfrak{m}}^{(0)}\right)^{\mathbf{n_{t}}}}{\Delta t}=\operatorname{im}\left(\tilde{u}_{i,\mathfrak{m}}^{(0)}\right)^{\mathbf{n_{t}}}-\frac{\alpha}{2}\sum_{\mathfrak{m}_{1}=-\infty}^{\infty}\left(\frac{\partial \tilde{u}_{j,\mathfrak{m}_{1}}^{(0)}\tilde{u}_{i,\mathfrak{m}-\mathfrak{m}_{1}}^{(0)}}{\partial x_{j}}\right)^{\mathbf{n_{t}}}-\frac{\partial \tilde{\eta}_{\mathfrak{m}}^{(0)}}{\partial X_{i}}-\left(\frac{\partial \tilde{\eta}_{\mathfrak{m}}^{(1)}}{\partial x_{i}}\right)^{\mathbf{n_{t}}}+\sigma\left(\frac{\partial^{2}\tilde{u}_{i,\mathfrak{m}}^{(0)}}{\partial x_{j}\partial x_{j}}\right)^{\mathbf{n_{t}}}$$

- Macro-scale (wavelength-scale) problem
 - Forest region for each harmonic LINEAR

$$n\left(-\mathrm{i}\mathfrak{m}\tilde{\eta}_{\mathfrak{m}}^{(0)}\right) + \frac{\partial \langle \tilde{u}_{i,\mathfrak{m}}^{(0)} \rangle}{\partial X_{i}} = 0$$

$$\longrightarrow \frac{\partial^{2}\tilde{\eta}_{\mathfrak{m}}^{(0)}}{\partial X_{i}^{2}} + \left(\mathfrak{m}^{2}\right)\tilde{\eta}_{\mathfrak{m}}^{(0)} = -\left(\frac{\alpha}{n}\right)\frac{\partial \tilde{M}_{\mathfrak{m}}}{\partial X_{i}} - \left(\frac{1}{n}\right)\frac{\partial \tilde{N}_{\mathfrak{m}}}{\partial X_{i}} + \left(\frac{\sigma}{n}\right)\frac{\partial \tilde{Q}_{\mathfrak{m}}}{\partial X_{i}}$$

$$-\mathrm{i}\mathfrak{m}\langle \tilde{u}_{i,\mathfrak{m}}^{(0)} \rangle + \alpha\tilde{M}_{\mathfrak{m}} = -n\frac{\partial \tilde{\eta}_{\mathfrak{m}}^{(0)}}{\partial X_{i}} - \tilde{N}_{\mathfrak{m}} + \sigma\tilde{Q}_{\mathfrak{m}}$$

○ Complex coefficients: ← Cell problem solutions

$$\tilde{M}_{\mathfrak{m}} = \frac{1}{2\Omega} \iint_{\Omega_{\mathrm{f}}} \left[\sum_{\mathfrak{m}_{1} = -\infty}^{\infty} \tilde{u}_{j,\mathfrak{m}_{1}}^{(0)} \frac{\partial \tilde{u}_{i,\mathfrak{m} - \mathfrak{m}_{1}}^{(0)}}{\partial x_{j}} \right] d\Omega, \quad \tilde{N}_{\mathfrak{m}} = \frac{1}{\Omega} \iint_{\Omega_{\mathrm{f}}} \frac{\partial \tilde{\eta}_{\mathfrak{m}}^{(1)}}{\partial x_{i}} d\Omega, \quad \tilde{Q}_{\mathfrak{m}} = \frac{1}{\Omega} \iint_{\Omega_{\mathrm{f}}} \frac{\partial^{2} \tilde{u}_{i,\mathfrak{m}}^{(0)}}{\partial x_{j} \partial x_{j}} d\Omega$$

Open water region for each harmonic – LINEAR

$$\begin{split} -\mathrm{i}\mathfrak{m}\tilde{\eta}_{\mathfrak{m}}^{(0)} + \frac{\partial \langle \tilde{u}_{i,\mathfrak{m}}^{(0)} \rangle}{\partial X_{i}} &= 0 \\ -\mathrm{i}\mathfrak{m}\langle \tilde{u}_{i,\mathfrak{m}}^{(0)} \rangle &= -\frac{\partial \tilde{\eta}_{\mathfrak{m}}^{(0)}}{\partial X_{i}} \end{split} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \frac{\partial^{2}\tilde{\eta}_{\mathfrak{m}}^{(0)}}{\partial X_{i}^{2}} + \left(\mathfrak{m}^{2}\right)\tilde{\eta}_{\mathfrak{m}}^{(0)} &= 0 \end{split}$$

• Micro-scale problem: $\frac{\partial \tilde{u}_{i,\mathfrak{m}}^{(0)}}{\partial x_{i}} = 0, \quad \vec{x} \in \Omega_{\mathrm{f}}$ Macro-scale pressure gradient $(-\mathrm{i}\mathfrak{m}) \ \tilde{u}_{i,\mathfrak{m}}^{(0)} + \frac{\alpha}{2} \sum_{\mathfrak{m}_{1} = -\infty}^{\infty} \left(\tilde{u}_{j,\mathfrak{m}_{1}}^{(0)} \frac{\partial \tilde{u}_{i,\mathfrak{m} - \mathfrak{m}_{1}}^{(0)}}{\partial x_{j}} \right) = -\frac{\partial \tilde{\eta}_{\mathfrak{m}}^{(0)}}{\partial X_{i}} - \frac{\partial \tilde{\eta}_{\mathfrak{m}}^{(1)}}{\partial x_{j}} + \sigma \frac{\partial^{2} \tilde{u}_{i,\mathfrak{m}}^{(0)}}{\partial x_{j} \partial x_{j}}, \quad \vec{x} \in \Omega_{\mathrm{f}}$

• Macro-scale problem: $\frac{\partial^2 \tilde{\eta}_{\mathfrak{m}}^{(0)}}{\partial X_i^2} + \left(\mathfrak{m}^2\right) \tilde{\eta}_{\mathfrak{m}}^{(0)} = -\left(\frac{\alpha}{n}\right) \boxed{\frac{\partial \tilde{M}_{\mathfrak{m}}}{\partial X_i}} - \left(\frac{1}{n}\right) \boxed{\frac{\partial \tilde{N}_{\mathfrak{m}}}{\partial X_i}} + \left(\frac{\sigma}{n}\right) \boxed{\frac{\partial \tilde{Q}_{\mathfrak{m}}}{\partial X_i}}$

Cell problem solutions

Macro-scale (wavelength-scale) problem

$$\text{Forest region:} \quad \frac{\partial^2 \tilde{\eta}_{\mathfrak{m}}^{(0)}}{\partial X^2} + \left(\mathfrak{m}^2\right) \tilde{\eta}_{\mathfrak{m}}^{(0)} = -\left(\frac{\alpha}{n}\right) \frac{\partial \tilde{M}_{\mathfrak{m}}}{\partial X} - \left(\frac{1}{n}\right) \frac{\partial \tilde{N}_{\mathfrak{m}}}{\partial X} + \left(\frac{\sigma}{n}\right) \frac{\partial \tilde{Q}_{\mathfrak{m}}}{\partial X}, \quad \text{if} \quad 0 < X < L_{\mathrm{F}}$$

$$\begin{array}{lll} \blacktriangleright & \text{Open water:} & \frac{\partial^2 \tilde{\eta}_{\mathfrak{m}}^{(0)}}{\partial X^2} + \left(\mathfrak{m}^2\right) \tilde{\eta}_{\mathfrak{m}}^{(0)} = 0, & \text{if} \quad X < 0 \quad \text{or} \quad X > L_{\mathrm{F}} \\ & & & \\ \tilde{\eta}_{\mathrm{I},\mathfrak{m}}^{(0)} = \mathcal{I}_{\mathfrak{m}} e^{\mathrm{i}\mathfrak{m}X} + \mathcal{R}_{\mathfrak{m}} e^{-\mathrm{i}\mathfrak{m}X} \;, & \tilde{u}_{\mathrm{I},\mathfrak{m}}^{(0)} = \mathcal{I}_{\mathfrak{m}} e^{\mathrm{i}\mathfrak{m}X} - \mathcal{R}_{\mathfrak{m}} e^{-\mathrm{i}\mathfrak{m}X} & \text{if} \quad X < 0 \\ & & & \\ \tilde{\eta}_{\mathrm{T},\mathfrak{m}}^{(0)} = \mathcal{T}_{\mathfrak{m}} e^{\mathrm{i}\mathfrak{m}X} \;, & \tilde{u}_{\mathrm{T},\mathfrak{m}}^{(0)} = \mathcal{T}_{\mathfrak{m}} e^{\mathrm{i}\mathfrak{m}X} & \text{if} \quad X > L_{\mathrm{F}} \end{array}$$

Matching conditions:

$$\eta_{\mathrm{I},\mathfrak{m}}^{(0)}=\eta_{\mathrm{F},\mathfrak{m}}^{(0)}\;,\quad \tilde{u}_{\mathrm{I},\mathfrak{m}}^{(0)}=\tilde{u}_{\mathrm{F},\mathfrak{m}}^{(0)}\quad \mathrm{at}\quad X=0$$

$$\eta_{\mathrm{F},\mathfrak{m}}^{(0)} = \eta_{\mathrm{T},\mathfrak{m}}^{(0)} , \quad \tilde{u}_{\mathrm{F},\mathfrak{m}}^{(0)} = \tilde{u}_{\mathrm{T},\mathfrak{m}}^{(0)} \quad \text{at} \quad X = L_{\mathrm{F}}$$

• Case 1: $T = 2.50 \,\mathrm{s}, \ A_{\mathrm{inc}} = 0.33 \,\mathrm{cm}$ $h_0 = 12 \,\mathrm{cm}, \ L = 2.692 \,\mathrm{m}$

$$\rightarrow$$
 $\alpha = 0.3957, \ \sigma = 0.0048$

Circles — linear model solution

Solid line — upper wave envelope

• Case 2: $T = 1.90 \,\mathrm{s}, \ A_{\mathrm{inc}} = 1.22 \,\mathrm{cm}$

$$h_0 = 12 \,\mathrm{cm}, \ L = 2.038 \,\mathrm{m}$$

 $\alpha = 1.1119, \ \sigma = 0.0136$

Circles — linear model solution

Solid line — upper wave envelope

$$\alpha = \frac{A_{\text{inc}}/h_0}{k_{\text{inc}}\ell} = \frac{A_{\text{inc}}/h_0}{\varepsilon}$$
$$\sigma = 1.86(1-n)^{2.06} \frac{1}{k_{\text{inc}}\ell} \left(\frac{A_{\text{inc}}}{h_0}\right) \equiv 1.86(1-n)^{2.06} \cdot \alpha$$

Reflection coefficient:
$$ar{\mathbf{R}} = \left(\sum_{\mathfrak{m}=0}^{\infty} |\mathcal{R}_{\mathfrak{m}}|^2\right)^{1/2}$$

Long waves through a forest belt $\alpha = \frac{A_{\rm inc}/h_0}{k_{\rm inc}\ell} = \frac{A_{\rm inc}/h_0}{\varepsilon}$

$$\alpha = \frac{A_{\text{inc}}/h_0}{k_{\text{inc}}\ell} = \frac{A_{\text{inc}}/h_0}{\varepsilon}$$

$$\sigma = 1.86(1-n)^{2.06} \frac{1}{k_{\text{inc}}\ell} \left(\frac{A_{\text{inc}}}{h_0}\right) \equiv 1.86(1-n)^{2.06} \cdot \alpha$$

Reflection coefficient:
$$ar{\mathbf{R}} = \left(\sum_{\mathfrak{m}=0}^{\infty} |\mathcal{R}_{\mathfrak{m}}|^2\right)^{1/2}$$

Summary

- Micro-scale problem:
 - The numerical model for solving micro-scale <u>nonlinear</u> problem is developed
 - > Boundary-fitting discretization is needed for improvement
- Macro-scale problem:
 - Higher harmonics are generated and radiated into outside region
 - The first harmonic is dominant and higher harmonics have smaller amplitude
 - Lack of gauge data for shallow-water waves
 - Model extension for taking vertical variation into account is needed
 - The use of drag coefficient and eddy viscosity will be made
 - More gauge data are available for model validation

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 - August 3, 2018

The State of the Art and Science of Coastal Engineering

Thank You

Che-Wei Chang

cc2338@cornell.edu

