36th International Conference on Coastal Engineering 2018 Baltimore, Maryland, July 31, 2018

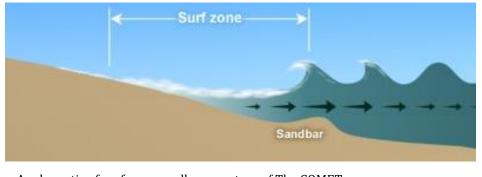
MODELING SHEET FLOW UNDER BREAKING WAVES ON A SURF ZONE SANDBAR

Yeulwoo Kim¹, Ryan S. Mieras², Zhen Cheng³, Tian-Jian Hsu¹, and Jack A. Puleo¹

¹Center for Applied Coastal Research Civil & Environmental Engineering University of Delaware ²Stennis Space Center U.S. Naval Research Laboratory ³Applied Ocean Physics & Engineering Woods Hole Oceanographic Institution

1. Introduction

Wave-driven sediment transport

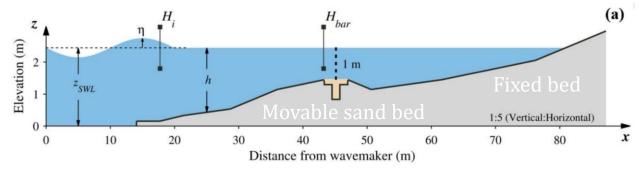


Complex mechanisms

- (1) Free surface effects
- (2) Boundary layer processes
- (3) Unsteady effect on bed shear stress, bedload, and suspended load
- (4) Grain properties

Sediment suspension under waves, courtesy of Clark Little

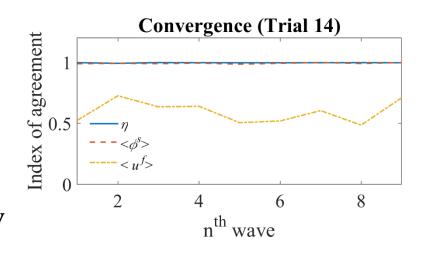
Surf zone sandbar


A schematic of surf zone sandbar, courtesy of The COMET program

- (1) Sandbar is a prominent feature in the cross shore beach profile undergoing seasonal migration
- (2) Act as a natural wave energy dissipater
- (3) Sediment transport is driven by wave velocity and acceleration skewness and undertow currents

1. Introduction

BARSED experiment (Mieras et al., 2017; Anderson et al., 2017)


A schematic of the laboratory experiment (Mieras et al., 2017)

• Detailed measurement of sediment transport at the sandbar crest

Intra-wave sediment concentration & velocity profiles and pore pressure gradient

 Ensemble averaged data can be obtained by ensemble-phase-averaging
3 trials which have 10, 10, & 9 waves, respectively
∴ 29 ensembles (Trials 14, 51, 80)

HWRL in OSU, Oregon, USA

104 m (*L*), 4.6 m (*h*)

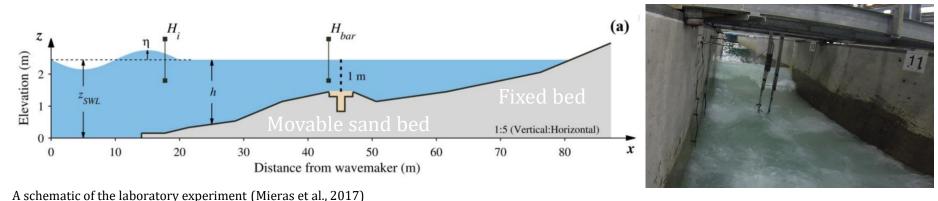
(S1T7H60)

 $H_{bar} = 0.94$ m, T = 7 s

(5) ADVs, ADPVs, FOBS, CCPs

h = 1 m at the sediment pit

 $D_{50} = 170 \,\mu\text{m}$, well-mixed


(1)

(2)

(3)

(4)

BARSED experiment (Mieras et al., 2017; Anderson et al., 2017)

Numerical models

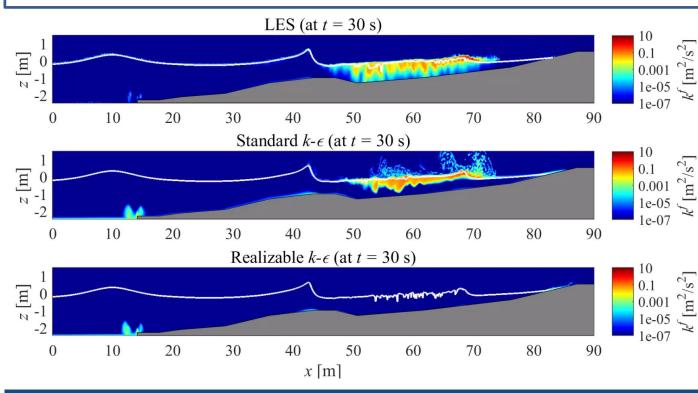
Single-phase Navier-Stokes wave model 3D (LES) & 2DV (RANS)

- Evolution of breaking wave turbulence landward of the sandbar crest.
- Performance of different turbulence models can be evaluated

Two-phase sediment transport models with/without free surface SedFoam & SedWaveFoam

- Examine various sediment transport mechanisms under breaking waves
- Isolate the free surface effect on sediment transport (e.g., streaming)

MODELING SHEET FLOW UNDER BREAKING WAVES ON A SURF ZONE SANDBAR


Þ

Single-phase (air-water mixture) Navier-Stokes wave model investigation

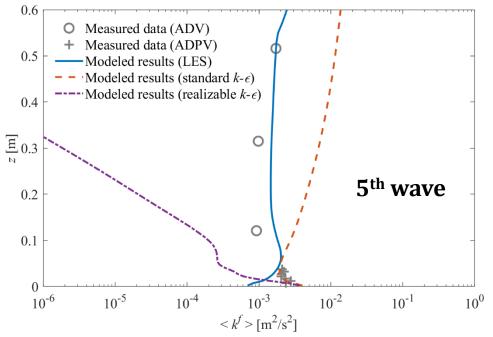
(1) 3D LES model with a standard Smagorinsky closure

(2) 2DV RANS model with a standard $k - \epsilon$ closure

(3) 2DV RANS model with a realizable $k - \epsilon$ closure

 All three models show returning TKE at later stage

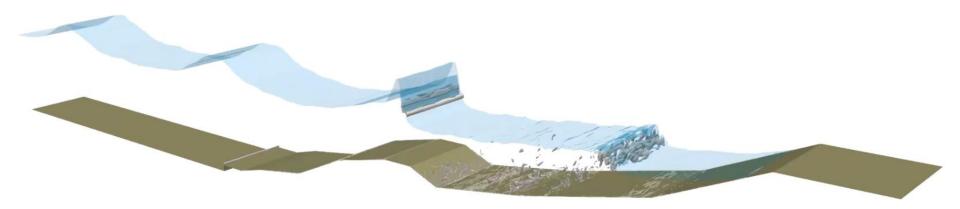
- Standard $k \epsilon$ does a better job at transition stage
- Spreading rate of TKE is much higher in standard $k \epsilon$


MODELING SHEET FLOW UNDER BREAKING WAVES ON A SURF ZONE SANDBAR

Single-phase (air-water mixture) Navier-Stokes wave model investigation

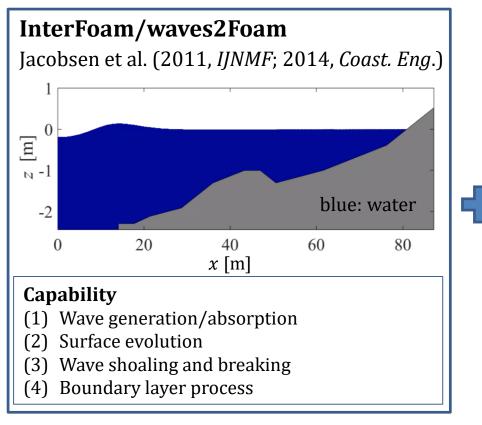
- (1) 3D LES model with a standard Smagorinsky closure
- (2) 2DV RANS model with a standard $k \epsilon$ closure
- (3) 2DV RANS model with a realizable $k \epsilon$ closure

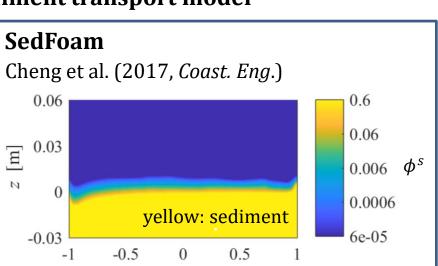
Model-data comparison of wave-averaged TKE


- **High-pass filtering** with 0.5 Hz cutoff frequency is applied to measured velocity before calculating TKE
- Phase-spanwise-average is applied for LES model results
- TKE for 5th wave is selected for RANS models
- Standard $k \epsilon$ closure overpredicts TKE at the later stage (after 6th wave)
- Realizable $k \epsilon$ closure agree with LES results only at later stage

Þ

Single-phase (air-water mixture) Navier-Stokes wave model investigation


- (1) 3D LES model with a standard Smagorinsky closure
- (2) 2D RANS model with a standard $k \epsilon$ closure
- (3) 2D RANS model with a realizable $k \epsilon$ closure


Turbulent coherent structure (TCS) using $\lambda_2 = -50$ (LES results)

- Wave-breaking turbulence approaches the bed landward of the bar crest.
- In this case, sediment transport at the bar crest may be mainly driven by wave velocity skewness, horizontal pressure gradient (acceleration skewness), and streaming

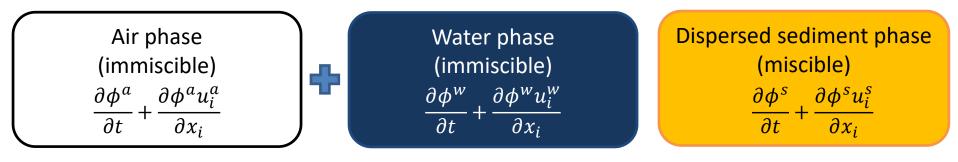
Free surface resolving two-phase Eulerian sediment transport model

Capability

(1) Two-phase sediment transport model

x [m]

- (2) Full profile of sediment transport
- (3) Sheet flow; scour around structures


• Only standard $k - \epsilon$ turbulence model is available

MODELING SHEET FLOW UNDER BREAKING WAVES ON A SURF ZONE SANDBAR

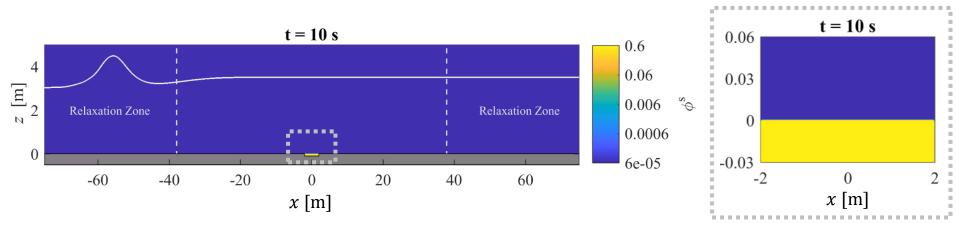
ψ

Ð

Reynolds-averaged Mass Conservation Equations

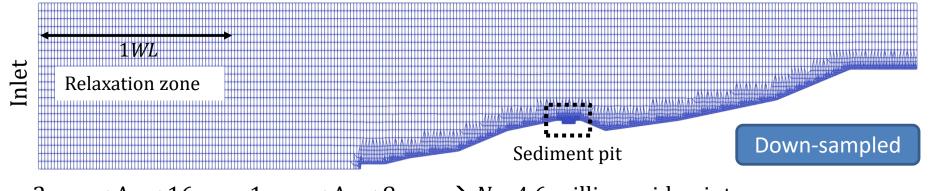
where ϕ is the volumetric concentration, satisfying $\phi^a + \phi^w + \phi^s = 1$

Air-water mixture phase (of two immiscible fluids)
$$\frac{\partial \phi^f}{\partial t} + \frac{\partial \phi^f u_i^f}{\partial x_i}$$

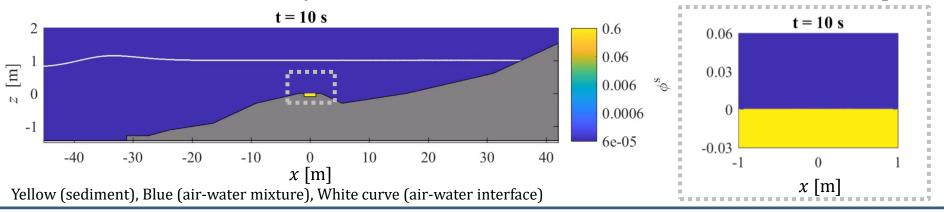

Dispersed sediment phase $\frac{\partial \phi^{s}}{\partial t} + \frac{\partial \phi^{s} u_{i}^{s}}{\partial x_{i}}$

where $\phi^f = \phi^a + \phi^w$ and $u^f = (u^a \phi^a + u^w \phi^w) / \phi^f$

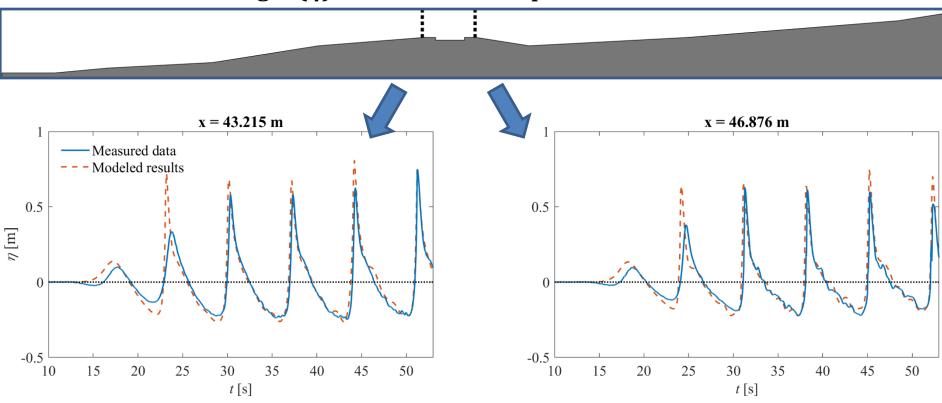
- Air-water interface is tracked by interface compression method (Berberović et al., 2009; Klostermann et al., 2013).
- Diffusion and excessive flux at the air-water interface is constrained.


First paper of SedWaveFoam is recently published in JGR: Oceans

Kim et al. (2018): A numerical study of sheet flow under monochromatic nonbreaking waves using a free surface resolving Eulerian two-phase flow model

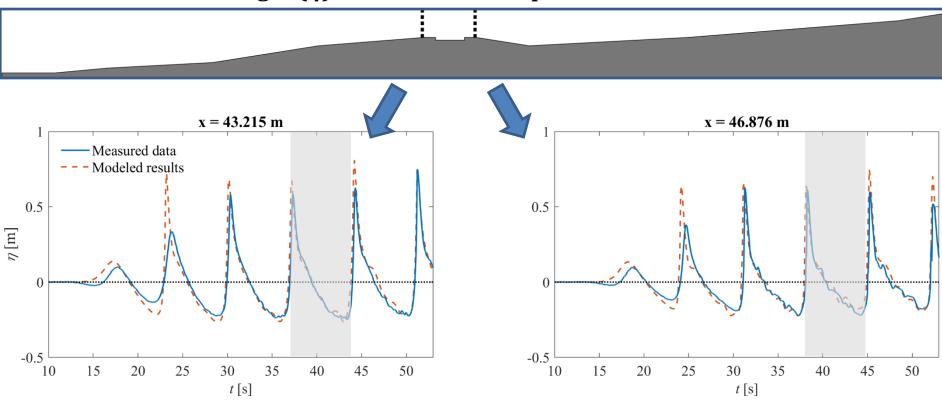

- Detailed **model validation** with the large wave flume data (Dohmen-Janssen & Hanes, 2002) of sheet flow under **monochromatic nonbreaking** surface waves
- Enhanced onshore sediment transport under surface waves associated with progressive wave streaming is due to a wave-stirring mechanism
- Source code and case setup are available at: https://github.com/sedwavefoam/sedwavefoam

2D numerical flume of 131 (*x*) x 5 (z) m with a sediment pit of 2.5 (*x*) x 0.1 (z) m



2 mm < Δx < 16 mm, 1 mm < Δz < 8 mm \rightarrow N = 4.6 million grid points

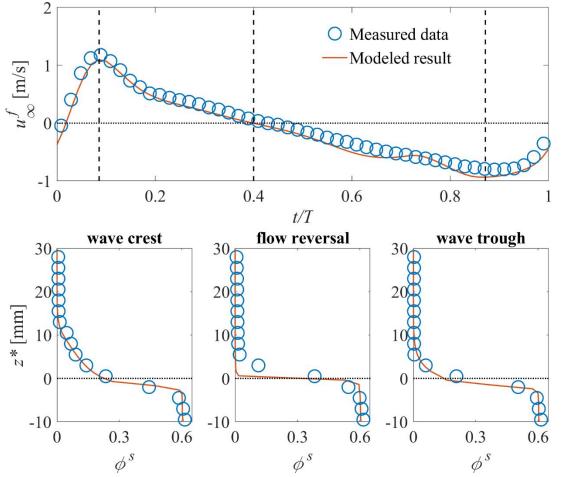
SedWaveFoam concurrently resolves free surface wave field and sediment transport


Time series of wave height (η) around sediment pit

• Model results agree well with the measured data ($IA \ge 0.93 \& NRMSE \le 0.8\%$)

• Zero-up crossing of η (or pressure in measured data) is used for ensemble-averaging

Time series of wave height (η) around sediment pit



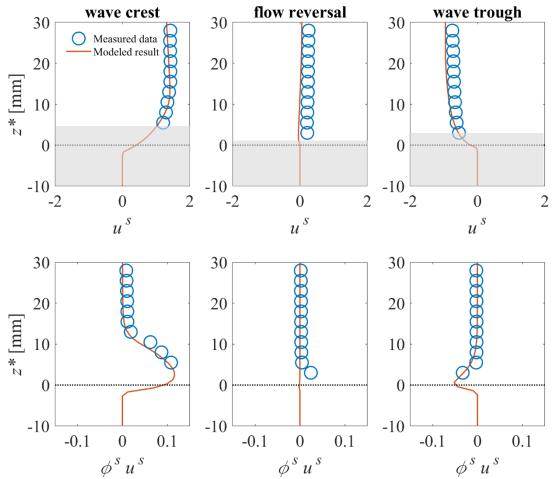
- Model results agree well with the measured data (IA \geq 0.93 & NRMSE \leq 0.8%)
- Zero-up crossing of η (or pressure in measured data) is used for ensemble-averaging
- 4th wave is selected for the model validations (no effect from the retuning TKE)


MODELING SHEET FLOW UNDER BREAKING WAVES ON A SURF ZONE SANDBAR



Free stream velocity and sediment concentration profiles ($z^* = 0$ is the bed location)

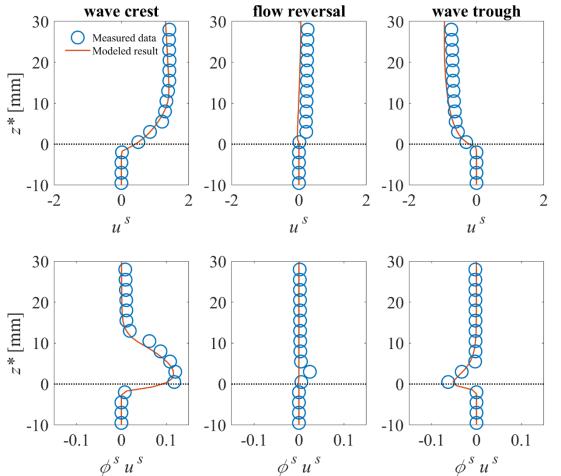
- Free stream velocity and sediment concentration profiles are predicted well (*IA* ≥ 0.99, NRMSE ≤ 0.6%)
- Notable discrepancy at the flow reversal may be attributed to smoothed data from CCP sensors δ_{s,min} ≈ 5 mm (Lanckrit et al., 2013)



- Free stream velocity and sediment concentration profiles are predicted well (*IA* ≥ 0.99, NRMSE ≤ 0.6%)
- Notable discrepancy at the flow reversal may be attributed to smoothed data from CCP sensors δ_{s,min} ≈ 5 mm (Lanckrit et al., 2013)
- Uncertainties of the sediment properties in the wave flume $(\phi^s < 10^{-2})$
 - \rightarrow looks like a washload
 - \rightarrow not used for transport rate

 Ψ

Vertical profiles of velocity (u^f) and sediment flux $(\phi^s u^s)$

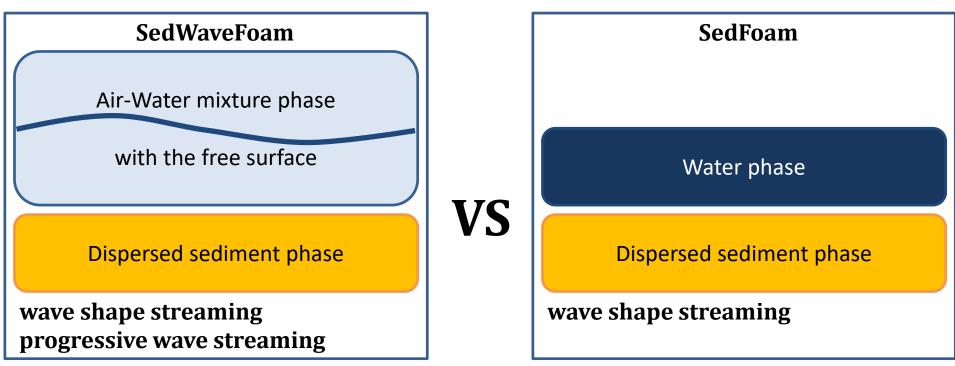


- In general, good agreements are obtained (NRMSE < 1.3%)
- Velocity in the sheet flow layer could not be measured
- Model results are used to cover the missing velocities in the measured data

MODELING SHEET FLOW UNDER BREAKING WAVES ON A SURF ZONE SANDBAR

ψ

Vertical profiles of velocity (u^f) and sediment flux $(\phi^s u^s)$

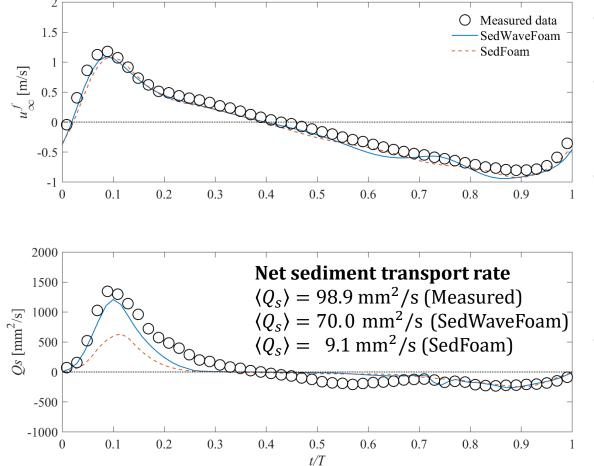


- In general, good agreements are obtained (NRMSE < 1.3%)
- Velocity in the sheet flow layer could not be measured
- Model results are used to cover the missing velocities in the measured data
- \rightarrow full profile of sediment flux

ψ

4. Discussion

1DV SedFoam (to model U-tube) is adopted to isolate the free surface effect



SedWaveFoam – SedFoam = progressive wave streaming + other free surface effects

- Same vertical grid size is applied with the 0.15 m domain size (> WBBL) for SedFoam
- To drive the flow in SedFoam, $f_{\text{ext}} = \rho^f \partial u^f / \partial t$ is calculated from SedWaveFoam

4. Discussion

Time series of free stream velocity (u_{∞}^{f}) and sediment transport rate ($Q_{s} = \int \phi^{s} u^{s} dz$)

- Both models are under very similar flow conditions
- Better prediction of the sediment transport rate is obtained by SedWaveFoam
- Progressive wave streaminginduced sediment transport rate

(SedWaveFoam – SedFoam)

 $\langle Q_{\rm pws} \rangle = 60.9 \, \rm mm^2/s$

• Nielsen and Callaghan (2003)'s method works reasonably well in predicting $\langle Q_{pws} \rangle$ $\langle Q_{pws} \rangle = 78.3 \text{ mm}^2/\text{s}$

MODELING SHEET FLOW UNDER BREAKING WAVES ON A SURF ZONE SANDBAR

Ψ

5. Conclusion

Ð

Summary

- 1. The fully coupled model, SedWaveFoam, has been developed to study sediment transport under various realistic surface waves
- 2. A comprehensive validation for sheet flow driven by breaking was carried out
- 3. The mechanism of progressive wave streaming driving the enhanced sediment transport under surface waves can be revealed by utilizing SedWaveFoam and SedFoam

Future works

- 1. Refine the simulation to better understand free surface effects on sediment transport
 - Identify the role of wave breaking turbulence, wave streaming current, and horizontal pressure gradient on sediment transport
- 2. Investigate wave breaking turbulence and sediment transport in the inner-surf zone and swash zone (e.g., dune erosion)

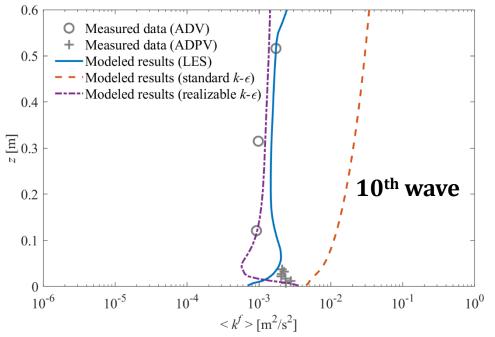
Thanks

Tom Hsu aka my advisor Hungry Charlie

> Ryan from Texas

Jack Puleo with smile

nmp


SAN

Þ

Single-phase Navier-Stokes wave model investigation

- (1) 3D LES model with a standard Smagorinsky closure
- (2) 2DV RANS model with a standard $k \epsilon$ closure
- (3) 2DV RANS model with a realizable $k \epsilon$ closure

Model-data comparison of wave-averaged TKE

- High-pass filtering with 0.5 Hz cutoff frequency is applied to measured velocity before calculating TKE
- Phase-spanwise-average is applied for LES model results
- TKE for 10th wave is selected for RANS models
- Standard $k \epsilon$ closure overpredicts TKE at the later stage (after 6th wave)
- Realizable $k \epsilon$ closure agree with LES results only at later stage