

# Infragravity Period Oscillations In A Channel Harbor Near A River Mouth

Florian Bellafont<sup>1</sup>, Denis Morichon<sup>1</sup>, Volker Roeber<sup>2</sup>, Gaël André<sup>3</sup>, Stéphane Abadie<sup>1</sup>



## Florian Bellafont <sup>1</sup>SIAME EA 4581, University of Pau and Pays de l'Adour <sup>2</sup>Univ of Hawaii at Manoa, Dpt of Oceanography <sup>3</sup>Hydrographic and Oceanographic Service of the Navy (SHOM)

ICCE 2018, Baltimore

# Study site: Port of Bayonne

Bay of Biscay



## Mesotidal environment

- Mean tidal level: 2.5 m above chart datum
- Tidal range of 1.7-4.7 m

## Wave climate

Exposed to large long-period swells

## Marina Open-ended basin



- o Methods
- o Field campaign
- o BOSZ model
- o Conclusion



Seiche (Rabinovich, 2009)

- Harbor resonance
- Generated by long waves
- Standing waves: vertical oscillations and horizontal currents



## **Channel harbor**

Situated near the river mouth of the Adour

Study site

- o Methods
- o Field campaign
- o BOSZ model
- $\circ$  Conclusion





## **Channel harbor**

• Study site

 Methods
Field campaign
BOSZ model
Conclusion

Situated near the river mouth of the Adour

## Surge motion of moored ships (Van der Molen et al., 2006)

- Moored ship = oscillating system with natural frequency
- Generated by long waves



## Problems for harbor security and operations



## **Channel harbor**

• Study site

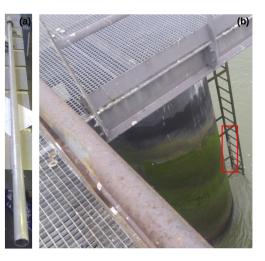
 Methods
Field campaign
BOSZ model
Conclusion

Situated near the river mouth of the Adour

## Surge motion of moored ships (Van der Molen et al., 2006)

- Moored ship = oscillating system with natural frequency
- Generated by long waves




## Problems for harbor security and operations



# Methodology

## **Field campaign**

- Characterize the hydrodynamic behavior of the harbor
- Fixing mechanism: access ladder to docks
- Study siteMethods
- o Field
- campaign
- o BOSZ model
- o Conclusion



## Numerical model

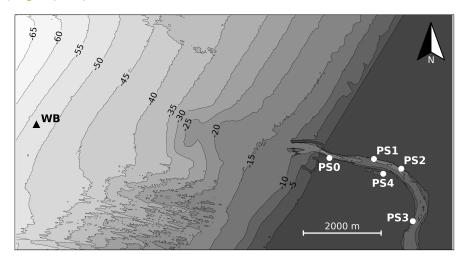
• Study of external forcing generation processes



## **Field campaign**

Offshore wave conditions (WB): directional wave buoy moored in 50 m water depth Channel harbor: pressure sensors (PS0 to PS3)

 0.3; 1.4; 2.2 and 3.7 km from the river mouth Marina: pressure sensor (PS4)
Sampling frequency: 1 Hz

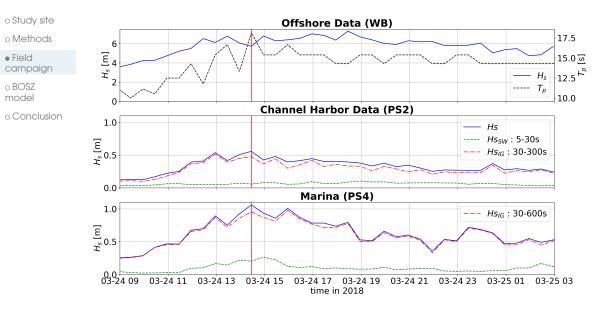

MethodsField

o Study site

e Field campaign

o BOSZ model

o Conclusion

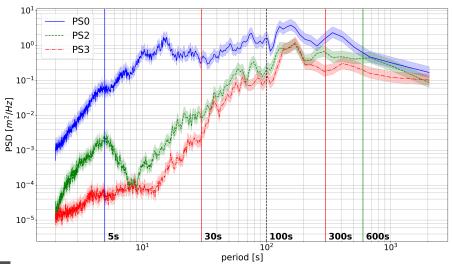



Annual storm event: Hugo, March 23, 2018



# Annual storm event

Storm Hugo



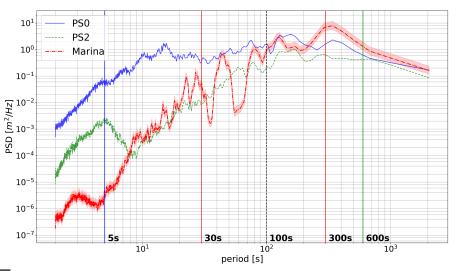


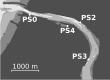

## Power spectral density and Hs

Channel harbor

- o Study site
- o Methods
- Field campaign
- o BOSZ model
- o Conclusion







|     | Hs   | Hs <sub>SW</sub> |    | Hs <sub>IG</sub> |    | Hs <sub>VLW</sub> |   | Hs <sub>IG1</sub> |    | Hs <sub>IG2</sub> |    |
|-----|------|------------------|----|------------------|----|-------------------|---|-------------------|----|-------------------|----|
|     |      | 5-30s            |    | 30-300s          |    | 300-600s          |   | 30-100s           |    | 100-300s          |    |
|     | m    | m                | %  | m                | %  | m                 | % | m                 | %  | m                 | %  |
| PS0 | 1.28 | 0.99             | 61 | 0.72             | 32 | 0.16              | 2 | 0.54              | 18 | 0.47              | 13 |
| PS2 | 0.35 | 0.07             | 4  | 0.31             | 79 | 0.08              | 6 | 0.18              | 28 | 0.25              | 50 |
| PS3 | 0.27 | 0.02             | 1  | 0.25             | 86 | 0.06              | 6 | 0.12              | 20 | 0.22              | 64 |

# Power spectral density and Hs

Marina

- o Study site
- o Methods
- Field campaign
- o BOSZ model
- o Conclusion





|    |        | Hs   | Hs <sub>SW</sub> |    | Hs <sub>IG</sub> |    | Hs <sub>VLW</sub> |    | Hs <sub>IG1</sub> |    | Hs <sub>IG2</sub> |    |
|----|--------|------|------------------|----|------------------|----|-------------------|----|-------------------|----|-------------------|----|
| 52 |        | 113  | 5-30s            |    | 30-300s          |    | 300-600s          |    | 30-100s           |    | 100-300s          |    |
|    |        | m    | m                | %  | m                | %  | m                 | %  | m                 | %  | m                 | %  |
|    | PS0    | 1.28 | 0.99             | 61 | 0.72             | 32 | 0.16              | 2  | 0.54              | 18 | 0.47              | 13 |
| 1  | PS2    | 0.35 | 0.07             | 4  | 0.31             | 79 | 0.08              | 6  | 0.18              | 28 | 0.25              | 50 |
| ļ  | Marina | 0.67 | 0.12             | 3  | 0.53             | 62 | 0.28              | 17 | 0.28              | 18 | 0.44              | 43 |



# Conclusions of field data

o Study site

o Methods

• Field campaign

o BOSZ model

o Conclusion

Efficiency of breakwaters: to protect the harbor against incoming swell and sea waves Harbor oscillations due to IG waves : 80% of energy in IG frequency band

Channel harbor : waveguide

- Free propagation of IG waves without amplification
- Low energy dissipation for periods > 100 s

Marina : coastal seiche

- Harbor resonance (Rabinovich, 2009)
- Resonant periods of basin: Merian formula

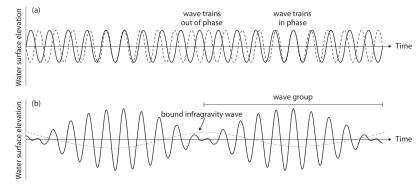
# Infragravity waves (IG)

Mechanisms for generation?

o Study site

o Methods

o Field campaign


• BOSZ model

o Conclusion

Periods: 30 to 300 - 600 s (5 - 10 min)

## Mechanisms for the generation

• Second-order nonlinear wave-wave interactions between wind waves (Longuet-Higgins, 1962 and Hasselmann, 1962)



• Temporal variation of the breakpoint (Symonds, 1982 and Schäffer, 1993)

Phase resolving approach: governing processes of the IG waves



## **Boussinesq model: BOSZ**

Model setup

#### o Study site

#### o Methods

o Field campaign

• BOSZ model

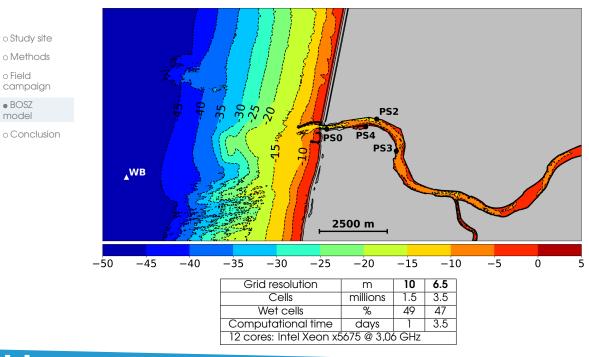
o Conclusion

**BOSZ model** (Roeber, 2010 and 2012): conservative form of the equations of Nwogu (1993)

Selected event: March 24 2018, 14h30 - 15h00 (UTC)

- Offshore conditions:  $H_s = 5.70 \text{ m} T_p = 18 \text{ s} \theta_p = 299^\circ \sigma_\theta = 19^\circ$
- Low tide: measured water level = 1.97 m above CD (sd = 0.05 m)
- Adour flow: 430  $m^3/s$  annual mean flow: 300  $m^3/s$

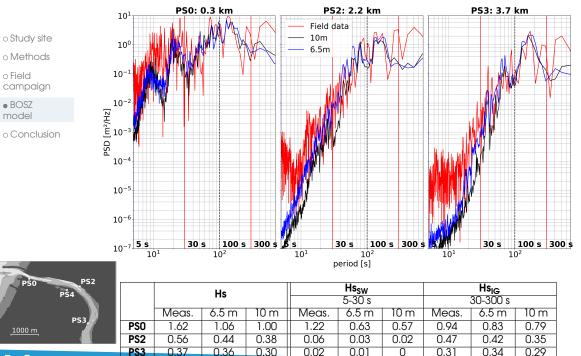
## Model simulation period: 4h


- Model initialization: 30 min (still water level)
- Spectral analysis: 30-min averaged segment

No tidal and no river current forcing

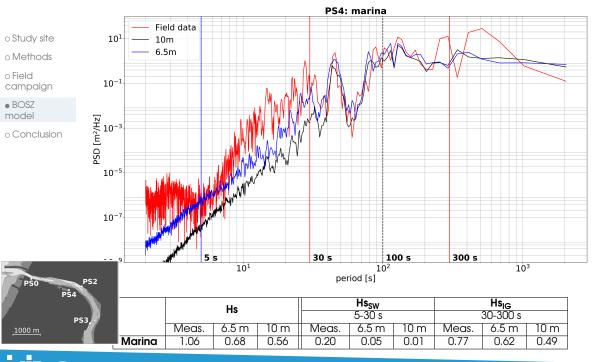


## **Boussinesq model: BOSZ**


Numerical domain






# Measurement and model result comparison

Channel harbor



# Measurement and model result comparison

Marina




# $H_s$ map



• BOSZ model

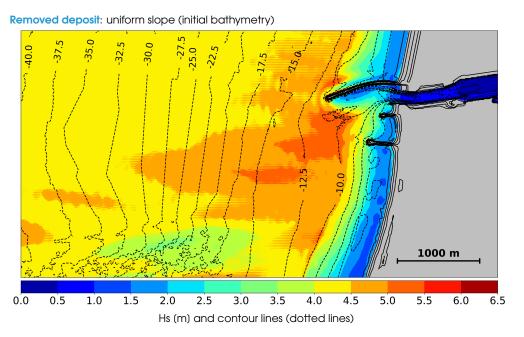
 $\circ$  Conclusion





ICCE 2018, Baltimore - 15/19

# Local nearshore bathymetry effects: deposit of dredged material *Hs map*


o Study site

o Methods

o Field campaign

• BOSZ model

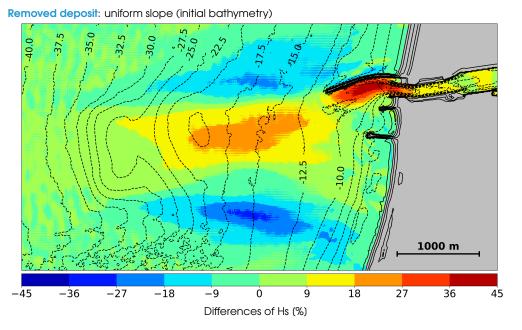
o Conclusion





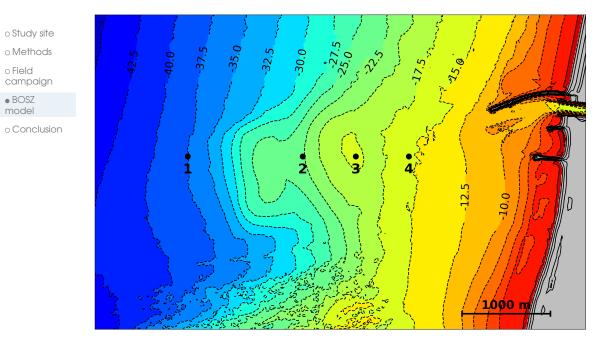
ICCE 2018, Baltimore - 16/19

# Local nearshore bathymetry effects: deposit of dredged material


Differences of Hs

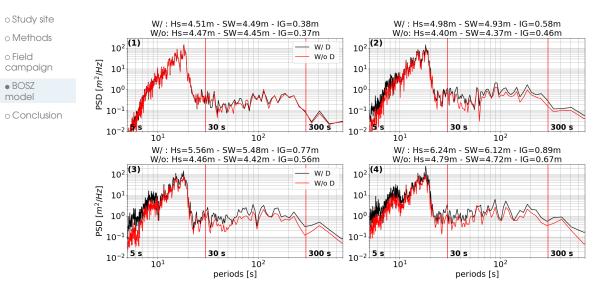


o Study site


• BOSZ model

o Conclusion






Locations of numerical gauges

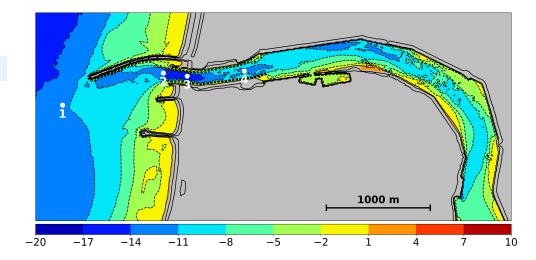




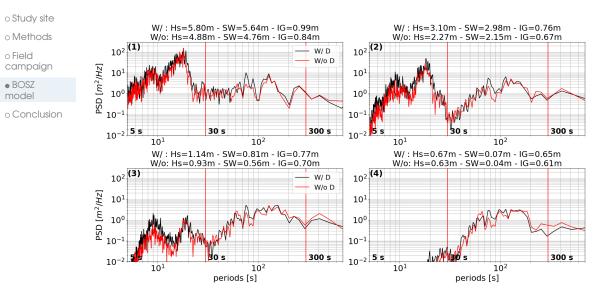
Power spectral density



Locations of numerical gauges


o Study site

o Methods


o Field campaign

• BOSZ model

o Conclusion



Power spectral density



# Conclusion

- o Study site
- o Methods
- o Field campaign
- o BOSZ model
- Conclusion

## Governing processes for generation of IG waves

Associated with wave groups: nonlinear wave interactions

Local nearshore bathymetry: deposit of dredged material

- Focusing wave energy: shoaling of incident waves
- Favors generation of IG waves

#### Further work:

- Effects of tide and river currents
- Upstream propagation of long waves in the river

# Thank you!

## CONTACT

## Florian Bellafont

bellafont.florian@univ-pau.fr

## Acknowledgments :

The authors thank the technical service of the port of Bayonne for the support provided during the design of the measuring devices. The work is co-funded by the Region Nouvelle Aquitaine and the Hydrographic and Oceanographic Service of the Navy (SHOM).



