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Groundwater level affected by tide, surge, & wave setup

Cartwright et al. 2004, Li et al. 2004, Robinson et al. 2007, Trglavcnik et al. 2018
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Shallow aquifer assumption:  
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Summary
• Storm increases in groundwater level (bulge) at dune cause inland flow.

• Time and space evolution of bulge reproduced with analytical theory.

• Diffusivity estimated for bulge smaller than that for tides??



Summary
• Storm increases in groundwater level (bulge) at dune cause inland flow.

• Time and space evolution of bulge reproduced with analytical theory.

• Diffusivity estimated for bulge smaller than that for tides?

Future  Work
• Determine whether salt plume under 

dune results from inland flow
• Determine whether plume affects 

bulge propagation
• Combine analytical theory with 

precipitation to flooding 
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