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SIMULATION OF SEA STORMS INCLUDING MULTIVARIATE STORM EVOLUTION 

Sebastián Solari1 and Miguel A. Losada2 

A new method for the simulation of storms is proposed which takes into account the multivariate evolution of the 

storms, allowing to innovate in the form of each simulated storm, for all the variables involved. The method is based 

on two novel aspects: (a) measured storms are grouped using clusters techniques and a set of average evolution  forms 

is defined for each cluster, one for each of the variables involved, and (b) a Vector Autoregressive model is fitted to the 

differences between the average evolution of each variable and the actual measured evolutions. The ability of the 

methodology to properly reproduce the joint probability distribution of all the variables involved is demonstrated for a 

case study at the mid Rio de la Plata northern coast. 
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INTRODUCTION 

The simulation of storms of met-ocean variables is a tool commonly used in probabilis tic design and 

probabilistic coastal risk assessments (see e.g. Martín-Hidalgo et al. 2014, Li et al. 2014, Davies et al. 

2017, ROM 1.0-09 and ROM 1.1 to be published). Traditionally, storms simulation methods have been 

based on the simulation of just a few values per storm, typically the peak significant wave height reached 

during a storm (i.e. Hs), other simultaneous or concomitant variables (e.g. Tp concomitant with Hs) and 

the duration of the storm (see e.g Solari et al. 2014). In those cases were it is also required to have 

information on the storm evolution, as is the cas e for analyzing damage progression or beach erosion, 

most common approach has been to impose some kind of equivalent form (see e.g. Borgman 1973, 

Castillo et al. 1977, Boccotti 2000, De Michele et al. 2007). However, with this approach it is not 

straightforward to reproduce the multivariate joint distribution of the values that are simultaneous to Hs, 

and at the same time to also reproduce the multivariate joint distribution of all the values that are not 

simultaneous to Hs (think, for example, on a triangular form for Hs and a rectangular form for the rest of 

the variables).  

Fig. 1 presents a typical example of the temporal simulation process. Once simulated the number 

and point in time of the storms throughout the year (not shown in the figure), which is usually done using 

a Poisson model, the next step is to simulate the values taken by each one of the variables for each storm. 

Starting from the distribution of the significant wave height at the storm peak, the duration of the storm 

and the characteristic values of the other variables (e.g. mean direction, mean period, sea level, wind 

speed, etc., all simultaneous with Hs,peak) are simulated from joint distributions that relate these variables 

with Hs,peak. Then, a standard form for the evolution of each of the variables is assumed, typically a 

triangular or rectangular shape for Hs and a rectangular shape for the other variables, obtaining the time 

evolution of all the variables along the storm (see e.g. Payo et al 2004, 2008, Baquerizo and Losada 

2008). This kind methodologies ensures the correct reproduction of the distribution of Hs,peak, as well as 

the reproduction of the joint distributions of Hs,peak and the concomitant values of the other variables; 

however, this methodology does not ensure that the distribution of Hs (all values above the threshold that 

defines the storm) or the joint distribution of Hs and the other variables (i.e. the joint distribution of all 

values, not only those that coincide with the peak of Hs). At the same time, it is evident that these 

methodologies do not innovate in the form (i.e. time evolution) of the storm, which limits the 

combinations of values of the variables that the method can generate. 
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Figure 1. Example of typical storm simulation method (see main text for explanation). 

OBJECTIVES 

The objective of the present work is to devise and test in a case study a methodology for the 

simulation of multivariate sea storms that fulfills the following requirements. As is the case in many of 

the existing methodologies, the new one should properly reproduces the multivariate distribution of the 

variables at storm peak. However, it should also be capable of reproducing the multivariate distribution 

of the values of all sea states included in the storm (i.e. not only sea states  corresponding to the peak of 

the storm) and capable of innovate in the storm evolution for all variables involved (i.e. storm forms or 

time evolutions should differ for every simulated storm). 

METHODLOGY 

The proposed simulation methodology considers that for each storm and for each variable, the 

temporal evolution of the variable is of the form given by Eq. (1) 

 

𝜃(𝑡) = 𝜃(𝑡)𝜎𝜃 + 𝜃̅ + 𝜖(𝑡)                       (1) 

 

where 𝜃 is any one of the variables being simulated (e.g. Hs, Tp, etc.), 𝜃(𝑡)  is the time evolution of the 

variable during a given storm, 𝜃(𝑡)  is the expected (or average) time evolution of the normalized variable, 

𝜃̅ ans 𝜎𝜃  are mean value and standard deviation of the values taken by the variable within a given storm 

and 𝜖(𝑡) is a time varying, auto-correlated, innovation process . Fig. 2 shows an outline of the model 

given by Eq.(1). 

 

 
Figure 2. Outline of the model proposed in Eq. (1): (a) expected evolution of the normalized variable during the 
storm (t* is a non-dimensional time, t*=t/D, being D the duration of the storm); (b) and (c) transformation from 
normalized variables to actual variables (i.e. Hs, Tp, etc.); (d) adding of the innovation process to obtain the 
actual evolution of the storm (in red) from the expected or average evolution (in dashed blue).  

Thus, the following models need to be defined for performing simulations based on Eq. (1): a model 

for the expected or average time evolution of each variable 𝜃(𝑡) , models for mean and standard deviation 

of each variable, 𝜃̅ and 𝜎𝜃 , and a model for the innovation process 𝜖(𝑡). These models are introduced 

and discussed below. 

(a) (b) (c) (d) 
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Expected evolution and storm duration model  

First, a bivariate distribution is fitted for the variables Hs,peak and Duration, assuming that Hs is the 

main variable and the one defining the occurrence of a storm. For applications where this is not the case, 

this step could be redefined, fitting a bivariate model for Duration and any other variable or variables of 

interest.  

Secondly, a vector is defined for each storm containing the time evolution of every variable, 

previously normalized using the mean and the standard deviation of the within storm values, where time 

was also non-dimensionalized using the storm duration. Then, these vectors are used to define average 

time evolutions; to this end k-means clusters technique is used. In this way, storm whose normalized and 

non-dimensional time evolution is similar are grouped into the same cluster, and the average or expected 

evolution is defined in the normalized and non-dimensional space as the cluster centroids. 

Lastly, the occurrence probability of each cluster (i.e. of each average evolution) in the Hs,peak-

Duration space is estimated. In this way, given a storm defined by the pair of values (Hs,peak,Duration), 

it is possible to estimate the probability of that storm having one of the previously defined average 

evolutions. 

Fig. 3 shows, for a case with two cluster, an outline of the probability density function of each cluster 

in the Hs,peak-Duration space: in that outline the red bivariate distribution corresponds to storms with  

average time evolution given by 𝜃1(𝑡) and the green bivariate distribution corresponds to storms with 

average evolution given by 𝜃2(𝑡) . For those storms with duration equal or less than 2 sea states, no 

average time evolution is defined, resorting to simplified forms. 

 

 
Figure 3. Outline of the model proposed for duration and expected time evolution of the multivariate storms. 

Innovation model 

The difference between the expected evolution of the storms and the actual evolution is modeled  

using an auto-regressive vector model (VAR) of order one and zero mean, such as that presented in Eq. 

(2): 

 

𝑌𝑡 = ∑ 𝐴𝑖𝑌𝑡−𝑖
𝑝
𝑖=1 + 𝑈𝑡              (2) 

 

where 𝑌𝑡 is a vector with values taken at time t by random variables that follow a multivariate normal 

distribution, that depends on p previous values of 𝑌𝑡−𝑖 (with i=1,…,p; in this case p=1 is used) trough 

linear coefficients contained in matrix 𝐴𝑖 , and on the values taken by Ut , that are i.i.d realizations  

following a normal multivariate distribution with zero mean.  

The first step for fitting a VAR model is the estimation of the marginal distributions of the variables 

𝜖(𝑡), that are the difference between the average and the actual evolution of the storms (i.e. 𝜖(𝑡) is a 

multivariate variable). Then, following Solari and Van Gelder (2011), these distributions are used to 

transform 𝜖(𝑡) to the normal multivariate variable 𝑍𝜖. Lastly, a order 1 VAR model is fitted to 𝑍𝜖. Fig. 4 

shows an outline of this process.  
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Figure 3. Outline of the determination and normalization of the innovation process. 

 

Mean and standard deviation models 

It is necessary to define models for the mean 𝜃̅ and the standard deviation 𝜎𝜃  for every variable. To 

this end there are several possible approaches and the selection of the most suitable one will depends on 

the case study characteristics. In this case it was opted to define the mean 𝜃̅ conditional to Hs,peak for 

every variable, and to define the standard deviation 𝜎𝜃  conditional to the corresponding 𝜃̅. The only 

exception was sea level, for which the mean 𝜃̅ was defined conditional to the mean value of the wave 

direction. 

For the definition of all the conditional distributions a combination of lineal and no-linear regressions 

was use, along with a Gaussian copulas for the case of the average sea level conditional to the average 

mean wave direction. 

Steps for simulation 

The steps followed for the simulation are: 

1. Simulate the number of events per year and they occurrence in time (not discussed in this work).  

then, for every event: 

2. Simulate Hs,peak from its marginal distribution (extreme value distribution obtained from a 

Peak-Over-Threshold analysis). 

3. Simulate Duration of the storm conditional to Hs,peak. 

4. Given Hs,peak and Duration, determine the probability of the storm coming from each cluster 

and randomly choose one accordingly. 

5. Simulate mean and standard deviation of each variable conditional to Hs,peak. 

6. Use Duration, mean and standard deviation to obtain expected storm evolution for each variable  

7. Simulate innovation process with the VAR model. 

8. Add innovations to the expected storm evolution of every variable to obtain the actual values of 

the variables. 

CASE STUDY 

For testing the performance of the proposed a 22 years hindcast of three-hourly wave and sea level 

parameters is used. Data corresponds to a location in the northern coast of the Rio de la Plata estuary (see 

Fig. 4). Mean water depth in the area is about 7 m; wave conditions are mainly sea, particularly during 

storms, and total sea level is mainly constituted by storm surges. The variables analyzed are significant 

wave height (Hs), mean wave period (Tm), mean wave direction (Dm) and total sea level (SL). 

 

 
Figure 5. Approximate location of the data used for the case study. 
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RESULTS 

Fig. 6 shows the three multivariate, normalized, storm evolution forms identified by means of the k-

means algorithm. The distribution of the events corresponding to each one in the Hs,peak-Duration space 

is shown in Fig. 7. 

In total 100,000 storms were simulated. From them the following results were obtained (all results 

are discussed in the next section). Fig. 8 shows the comparison of the marginal distributions obtained 

from the simulated storms with the corresponding empirical ones; in particular it shows the marginal 

distribution of Hs,peak, and that of Hs and Dm (all values, not only those concomitant with the peak of the 

storm). Fig. 9 shows the bivariate distributions (Hs,Tm) and (Dm,SL) for both: data corresponding to the 

peak of the storm (i.e. concomitant with Hs,peak) and all data. Finally, an analysis of the time evolution of 

the storms is presented in Fig. 10 and Fig. 11. Fig. 10 includes the time evolution of observed severe 

storms and simulated severe storms with the same range of Hs,peak values.  Fig. 11 shows the multivariate 

time evolution for 100-year return period storms (for which there are no hindcast data available for 

comparison). 

 

 
Figure 6. Average multivariate storm evolution; variables are normalized with mean and standard deviation of 
each storm; time is non-dimensionalized with storm duration. 

 

 
Figure 7. Distribution of the three storm evolution clusters in the Hs,peak-Duration space. 
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Figure 8. Comparison of simulated and empirical marginal distributions of: (a) Hs,peak; (b) all Hs data; (c) all Dm 
data. 

 

(a) 

(b) (c) 
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Figure 9. Bivariate distribution of (Hs,Tm) (left) and (Dm,SL) (right); only data concomitant to storm peak (upper 

panels) and all data (lower panels). In colors are the bivariate PDF obtained from simulations; red dots are the 
hindcast. 

 

 
Figure 10. Upper panel: mean and 80% confidence interval of Hs time evolution of simulated storms with 
Hs,peak around 2,6 m (grey lines) and average storm evolution from hindcast data (red line). Lower panel: 
frequency of simulated storms reaching different time lags relative to storm peak. 



 COASTAL ENGINEERING 2018 

 

8 

 
Figure 11. Left panels: identification of 100-years range of values for Hs,peak (upper) and simulated storms in 
that rage in the Hs,peak-Duration space (lower). Right panels: Average and 80% confidence intervals for the 
evolution of Hs, Dm and SL, and frequency of reaching time lags relative to the storm peak, from simulated 
storms in the 100-years return period range of values. 

DISCUSSION 

The three average storm evolution forms identified by the methodology (Fig. 6) are clearly different. 

While forms 𝜃1̂   and 𝜃2̂   differ mainly in the evolution of the wave direction:  in 𝜃1̂  they rotates clockwise 

and in 𝜃2̂  they rotate counterclockwise, 𝜃3̂  clearly differentiate from the others in the evolution of the sea 

level. It is noted that none of the average form would be properly reproduced by a triangular, nor by a 

rectangular form. From Fig. 7 it is seen that identified clusters not only differ in terms of its sto rm 

evolution forms but also in terms of its distribution in the Hs,peak-Duration space, with average form 𝜃2̂   

tending to occur with lager Hs,peak and lower durations that 𝜃1̂  and 𝜃3̂ . 

The simulations properly reproducing the distribution of Hs,peak (Fig. 8, a) should not be a surprise as 

this variable is directly simulated from its marginal distributions. Moreover, it is shown that the 

simulations properly reproduce marginal (Fig. 8, b and c) and bivariate (Fig. 9) probability distributions 

that are not used in the simulations. In all these cases the variables are simulated indirectly, through the 

simulation of the storm evolutions, their mean and standard deviations and the innovations. The fact that 

present methodology is able to properly reproduce these distributions without simulating directly from 

them is an indicator that the general model given by Eq. (1) is a reasonable representation of the actual 

behavior of the storms. 

In some cases the simulation missed some particular features of the bivariate distribution, as is the 

case in Fig. 9 (lower right panel). This is believed to be due to simplifications made when modelling the 

relation between average direction (𝐷𝑚̅̅ ̅̅ ) and average sea level (𝑆𝐿̅̅ ̅). As mentioned, quite simple models  

were used for modelling 𝜃̅ and 𝜎𝜃 , leaving some room for future improvements of the results. 

From Fig 10 it is seen that average storm evolution obtained from the simulations properly reproduce 

those observed, but with an increased variability, as evidenced by the confidence intervals. Moreover, 

from Fig. 11 it is seen that for the central sea states the average evolution of Hs is more or less triangular, 

but that the evolution of the other variables are not necessary rectangular, not even in average terms; 

also, when confidence intervals are taken into account, it is concluded that innovation capability of the 

methodology is able to produce storm evolutions that clearly depart from triang ular or rectangular 

standard forms. 
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COCNLUSION 

The proposed methodology is able to reproduce marginal and joint distribution of the values 

occurring concomitant with the peak of the storm, and the same time is able to reproduce these 

distribution when considering data from the entire storm (i.e. distribution of all the data, not only of the 

values taken during the peak of the storm), even though some features of the bivariate distributions  are 

still not fully reproduced. 

Regarding storm evolution, s imulated storms mimics the evolution of the observed ones, while the 

innovation process result in a variability of the forms that seems to be reasonable. 

In summary, the methodology allows for the simulation of multivariate sea storms and it can be used 

for probabilistic verification and risk analysis, in particular for those cases involving damage evolution 

models for structures (or beaches). 
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